The Private Impact of Public Maps:
Landsat Satellite Imagery and Gold Exploration

Abhishek Nagaraj*

June 7, 2017

Abstract

Governments routinely invest in large-scale, scientific projects that provide basic knowledge about natural phenomena and yet the economic-value of these initiatives remains unexamined. To make progress on this topic, this study estimates the impact of Landsat, a NASA satellite-mapping program, on shaping the discovery of new deposits in the gold exploration industry. Exploiting idiosyncratic timing variation in mapping coverage, I find that information from Landsat nearly doubled the rate of significant gold discoveries from the industry. These new discoveries were disproportionately made by junior, entrepreneurial firms and in regions with strong local institutions, supporting the theory that Landsat seems to have enabled discovery by lowering the costs of early-stage experimentation. The public provision of basic knowledge through government mapping information seems to be an important determinant of the overall level and distribution of industry innovation and entrepreneurship.

* NBER and UC Berkeley-Haas (starting July, 2017). Email: nagaraj@berkeley.edu. I am thankful to Scott Stern, Heidi Williams, Pierre Azoulay and Catherine Tucker for their invaluable support, encouragement, and comments. Many other colleagues and seminar participants at the NBER Summer Institute, MIT Sloan Working Group and the MIT Applied Economics Seminar also provided very helpful comments. Several individuals from NASA and USGS Landsat program, and the gold exploration and remote sensing industry provided guidance. Funding from the MIT Initiative on the Digital Economy, the Kauffman Foundation Dissertation Fellowship, and the Beyster Fellowship is gratefully acknowledged. All errors remain mine.
1 Introduction

Basic knowledge about the physical world has been theorized to lead to new technological innovations and economic growth (Romer, 1990). The US government spends considerably on basic research, with R&D spending comprising between 2% and 3% of GDP (Goolsbee, 1998) since the 1960s, and has allocated almost $145 billion in R&D expenditure in 2016 (Hourian and Parkes, 2015). Investments in such knowledge are often subsidized by the public sector, given the widely held view that basic knowledge is a public good and is “difficult to finance in a freely competitive market place” (Hall, 2002). Despite this argument, critics contend that government investments are ineffective because they crowd-out private investment in basic knowledge, can be misdirected (Kealey, 1996) and are ineffective in encouraging industry innovation (Lerner, 2009). Consequently, a large literature has looked at the role of the public-sector investments in basic knowledge on private-sector innovation, but measurement and identification challenges have meant that there exist few causal estimates of this important margin (David et al., 1992; Hall and Van Reenen, 2000).

I make progress on this question by studying the causal impact of the NASA Landsat satellite mapping program on shaping the discovery of new deposits in the gold exploration industry. While the literature has mostly focused on policies such as R&D tax incentives (Bloom et al., 2002; Rao, 2016; Agrawal et al., 2014) or financial subsidies and grants (Czarnitzki and Lopes-Bento, 2013), in practice, the government spends billions of dollars on large-scale “mapping” initiatives which provide basic scientific data with commercial applications such as the Human Genome Project (Williams, 2013), the Hubble Telescope or the Large Hadron Collider (Stephan, 2012). In this paper, I argue that by focusing on the role of such public “mapping” projects on private-sector innovation, it is possible to shed light on the causal effects of public-sector investments in basic knowledge in promoting industry innovation as well as highlighting a new channel through which public sector investments in basic knowledge affect private-sector outcomes.

Maps are the oldest form of publicly-provided knowledge (as indicated by the Borges’ quote above) and economic history points to anecdotal examples of their value. For example, the Itinerario, a compendium of publicly distributed maps (Davids, 1986) published in 1596, has been associated with helping the discovery of trading relationships between the British East India company and south-asia and ending Portuguese

1 containing basic knowledge about the East Indies including “very delicate nautical data that provided insight into the currents, deeps, islands and sandbanks of unprecedented accuracy for those days”
monopoly in the region (Jefferson, 2013). Despite their importance in economic history, government investments in mapping programs are often mired in perennial debates about their value (Gabrynowicz, 2006) and there exists significant variation in public investment in mapping programs across countries.2 Echoing the broader debate over the value of public support for basic knowledge, the implications of variation in mapping efforts are hard to predict from theory alone. On one hand, public investments in mapping information could crowd-out or duplicate private efforts, while on the other, they could help address market failures that cause under-investment by the private-sector in basic mapping information.

I propose that by opening the “black box” of mapping as an economic activity, it is possible to understand the role of publicly-funded knowledge on innovation. I focus on the internal details of the Landsat program (which provided the first maps of Earth from space), in order to inform the broader question of the impact of publicly-provided basic knowledge on private-sector outcomes. While Landsat was designed to map the entire surface of the earth, in practice, there was significant variation in the timing of the mapping effort across regions. Of the 9493 “blocks” (regions of 100 sq. mile each) needed for global coverage, a significant portion received satellite maps in the first few years of the program, while there was a long tail of regions which were mapped significantly later over the next decade.3 Quantitative assessments (as shown in Figure 1) and qualitative interviews indicate that even though some of this variation was driven by endogenous choices on the part of program administrators who prioritized the continental USA, significant timing differences were unintentional due to reasons like technical failures in satellite operations and cloud-cover in imagery.

I utilize this timing variation to estimate the impact of the Landsat program for private-sector innovation. While designed for its agricultural applications, knowledge from the Landsat program helped describe the basic geology of the earth’s surface and aided the early-stage exploration for minerals and energy resources (Rowan et al., 1977), which is why I focus on the gold exploration sector, an industry with over $5 billion in annual exploration expenditures in 2010 alone (Schodde, 2011).4 The main dependent variable is an indicator variable for significant new gold discoveries5 at the block-year level obtained from a proprietary, hand-collected database of major discoveries by exploration firms between 1950 and 1990. By focusing on the mining industry, I’m able to evaluate the impact of the Landsat program on direct measures of innovation such as the discovery of new deposits, similar to past work that measures innovation in the pharmaceutical industry through the discovery of new molecules or drugs (Acemoglu and Linn, 2004; Henderson et al., 1994).

To estimate the impact of Landsat on gold discovery, I isolate the quasi-random variation in the timing of the

2See http://index.okfn.org/place/ for an overview.
3Including some blocks that were never mapped by the first generation of Landsat satellites.
4Conceptually, the findings from this study could generalize to exploration for other natural resources like oil and gas, copper, and uranium, even though global discovery data for these industries are harder to obtain.
5ranging from about 0.3-80 million ounces of gold reserves
mapping effort using a differences-in-differences framework. Given possible concerns over selection in the timing of the mapping effort, this specification flexibly controls for differences in “prospectivity” (the “true” probability of finding resources) between different regions through time-invariant block fixed-effects, and for secular changes in the gold exploration market over time (including gold prices) through year fixed effects. A battery of tests, including testing for differences in gold discovery trends before the mapping program was launched, region-specific time trends and excluding the United States from the analysis, help to establish the validity of the baseline specification. In addition to the main differences-in-differences specification, I also implement an instrumental-variables (IV) specification that is based upon the average cloudiness of different regions derived from weather data to provide a robustness check for the main specification.

The empirical results show that, despite strong private incentives for mapping that have existed for centuries, the public Landsat mapping effort in the 1970s had a significant impact on the gold exploration industry. In baseline estimates, mapped regions were almost twice as likely to report a discovery when compared to unmapped regions after controlling for region and time indicators. These differences imply meaningful impacts of the mapping effort on discovery in dollar terms for affected regions—using rough estimates of discovery value (derived from data on the size of discoveries) the Landsat program led to a gain of approximately $17 million dollars for every mapped 100 sq. mile block over a fifteen year time period. For a country the size of the US (with about 3.8 million sq. miles) this translates to additional gold reserves worth about $6.4 billion USD that can be attributed to the information from the Landsat program. (See Appendix B for detailed back-of-the-envelope calculation behind these estimates.)

Next, I explore the theory that one prominent mechanism through which new maps affects firms is by helping lower costs of early-stage experimentation (Kerr et al., 2014) in the search for new innovations. In order to test this idea, I analyze how gains from Landsat were distributed between different kinds of market participants and regions. First, I argue that lowering costs of early-stage exploration are more relevant for capital-constrained, “junior” firms in the exploration industry as compared to “senior” firms, larger and more established players. Consistent with this hypothesis, I find that juniors make about one of every four new discoveries in blocks that benefit from satellite mapping, as compared to a base rate of one in ten, before the launch of the program. This translates to a 5.8 fold increase in the rate of discoveries for junior firms as compared to a factor only 1.7 for senior firms. Second, I argue that lowering costs of early-stage experimentation are more likely to be relevant in regions where institutional conditions inherently support the experimentation process and predict that the impact of the Landsat program is greater in regions where local institutional conditions are seen as favorable for exploration. The data support this prediction. Therefore,

6These estimates represent an upper bound on the value of Landsat if one assumes that public information accelerated discoveries that were bound to occur at some point in time.

7including financial institutions as well as the strength of property rights
the evidence evaluating the heterogeneous impacts of the Landsat program across firms and regions suggests one prominent mechanism through which Landsat mapping encouraged discoveries is by relaxing costs of early-stage exploration for smaller firms (Kerr and Nanda, 2009) as well as in regions with a higher quality of local institutions.

The main contribution of this paper is to the economics and management of innovation literature on the industry implications of public-sector investments in basic knowledge (Lerner, 2009; Furman et al., 2006; Bloom et al., 2002; Cohen et al., 2002; Cockburn and Henderson, 1997). There exists significant anecdotal evidence on the value of public-sector investments through case studies of specific technologies (such as smartphones (Mazzucato, 2015) or pharmaceuticals (Stephan, 2012), but quantitative, causal estimates have been hard to find. A few recent studies make progress by providing quasi-experimental estimates of the impact of public subsidies on private-sector patenting, an indirect, but useful measure of commercial productivity (Moretti et al., 2014; Dechezleprêtre et al., 2016; Azoulay et al., 2015; Howell, 2014).

Building on this literature, this study makes three contributions. First, I provide estimates of public provision of basic knowledge on direct measures of innovation, in contrast with previous work that focuses on patenting. Second, I add to the literature, by presenting evidence for the differential impacts of publicly-provided knowledge across larger and smaller firms (Arora and Cohen, 2015), and across regions, which suggests a theoretical mechanism (early-stage experimentation) through which public-sector investments affect discovery. Finally, I highlight a novel “mapping” channel through which government support for basic knowledge affects innovation in the private sector (i.e. support for basic “data” beyond tax incentives, support for academic research, federal grants or R&D subsidies), and provide an empirical framework to understand the impact of these investments for firms. More broadly, this work points to the role of mapping as an under-studied activity that could be an important driver of innovative outcomes. This work echoes arguments made by David and Wright (1997), who hypothesize that American leadership in energy and minerals is driven, not simply by an exogenous endowment in these resources, but also by policy forces such as investments in geological maps and institutions like the US Geological survey. This paper is a direct test of this idea and a framework to evaluate similar efforts to provide basic mapping data in other industries such as biology or astronomy.

The paper proceeds as follows. Section 2 discusses the related literature and provides a conceptual framework, Section 3 helps explain some of the institutional details of the Landsat project, Section 4 describes the data and research design, Section 5 highlights key results and estimates and Section 6 concludes.

8 see Czarnitzki and Lopes-Bento (2013) and David et al. (2000) for an overview.
2 Literature and Theoretical Overview

2.1 Public Support for Basic Knowledge

While there is no direct literature on the role of mapping information on economic outcomes that I am aware of, the present study is related closely to literature on the role of publicly provided basic knowledge on innovation and performance at the firm-level (Hall and Van Reenen, 2000). At the core of this literature is the idea that the private sector might not have sufficient incentives to invest in basic knowledge (Arrow, 1962). This problem seems to have been exacerbated as private investments in basic knowledge have dropped significantly over the last few decades (Arora et al., 2015). This market failure could stem from two, interrelated channels (Nelson, 1959). First, basic knowledge is often published and distributed openly and is hard to appropriate in a world with imperfect intellectual property, making it a public good. Therefore, investments in basic knowledge are often speculative and it is difficult to predict ex-ante whether and how such information will prove useful to the investing firm. Second, basic knowledge often tends to have a wide applicability across industries, and it is difficult for the investing firms to internalize externalities from knowledge spillovers (Jaffe et al., 1993; Henderson and Cockburn, 1996) to other firms or industries from basic knowledge. Combined, there is significant theoretical support for the idea that there might be significant under-provision of basic knowledge. It has therefore been proposed that the public-sector needs to invest in the production of basic knowledge, which will be picked up by firms in the private sector (Scotchmer, 2004; Stephan, 2012). In my context, if private mapping is too costly and if its value is hard to appropriate or if its benefits are hard to estimate ex-ante, public support for its funding might be justified.

Despite strong theoretical reasons for encouraging public investments in basic knowledge, critics do not support the idea that the public sector should invest valuable resources (that could be allocated to questions of public health or education) in this area (Kealey, 1996). One criticism has been the argument that the “public goods” nature of basic knowledge might misrepresent the nature of the innovation process by implying that scientific knowledge is “on the shelf, costlessly available to all comers” (Rosenberg, 1990). Empirical evidence from surveys finds that rival firms need to make substantial and non-trivial investments in imitative activities (Mansfield, 1985) which provides sufficient incentives for private-sector firms to engage in its production. The related theory of “absorptive capacity” (Cohen and Levinthal, 1990) also argue that firms may benefit uniquely from investments in basic knowledge providing them with unique capabilities that are hard to appropriate. Finally, critics have cast doubt on the ability of the government to “pick winners”, even if the private-sector does not invest sufficiently in the production of basic knowledge. This line of argument concludes that the quality of public sector funding of new ideas often fares poorly when compared with other sources of financing innovative investments such as venture capital or private lenders (Lerner, 2009; Pahnke et al., 2015). This problem could be further exacerbated because public sector financing is often susceptible
to political influences such as lobbying (Hegde and Sampat, 2015) which may distort downstream innovative outcomes from the private sector. Applied to the case of the gold exploration industry, these critiques would predict that firms have sufficient incentives to invest in private mapping (given that they might develop unique capabilities and acquire unique knowledge through this process), leading to a lower need for the public sector to intervene.

Despite this long and rich theoretical debate on the value of public sector investments in basic knowledge for industry innovation, empirical evidence on this question has been mixed and inconclusive (David et al., 2000), largely due to empirical challenges. In order to test the predictions of the theory, it is necessary to introduce quasi-random variation in the amount of basic knowledge and estimate the impact of such variation on firm performance and innovation. While a number of different papers have tried to estimate regressions in this spirit (see Czarnitzki and Lopes-Bento (2013) or Hall and Van Reenen (2000) for a review), empirical challenges have complicated interpretation. Two recent papers make significant progress on this challenge by more precisely measuring the relationship between investments in basic knowledge and firm innovation using a more robust quasi-experimental research design. Azoulay et al. (2015) introduces variation in investments across different research areas using rules governing the National Institutes of Health (NIH) peer review process. They study the impact of funding variation on patenting by private sector firms and find that a $10 million boost in NIH funding leads to an increase of 2.3 patents by the private sector. Another related paper, Moretti et al. (2014) estimates the impact of exogenous changes in defense R&D expenditures on private sector R&D. They find a positive relationship between public support for R&D and industry productivity, implying that the provision of basic knowledge might have an important role to play in boosting industry performance. While these new studies are promising, they do not test the impact of public sector innovation on direct outcomes of the innovative process, such as the discovery of new drugs or the introduction of new products. Further, past work has identified systematic measurement error in measuring knowledge flows using patent citations which “can lead to substantial underestimation of the effect of public research on firms’ innovative performance” (Roach and Cohen, 2013).

The present paper builds on this literature and tests whether investments in basic knowledge has any effects on direct measures of performance in the private-sector. Specifically, I study a novel context— the gold exploration industry. Similar to past work which has looked at drug discovery (Henderson et al., 1994) as a measure of innovation, I am able to look at the discovery of new gold deposits as a direct measure of innovation in this context. By evaluating a setting where the impact of quasi-experimental variation in the availability of basic knowledge through publicly-provided maps can be investigated on a direct measure of performance, I am able to provide a new empirical framework to evaluate this question. This framework is useful to shed light on the core theoretical argument at the heart of the literature: does the private-sector have sufficient incentives to make investments in basic knowledge or could the public-sector play a productive
role in enabling innovation through the provision of basic knowledge?

2.2 Differential Impacts of Basic Knowledge and Theoretical Mechanism

In addition to investigating the overall effects of public support for basic knowledge, I also consider the specific channel through which public financing of basic knowledge could affect industry innovation. While many related channels are likely to co-exist, I focus on the theory that the public provision of basic knowledge lowers costs of experimentation for exploration firms (Kerr et al., 2014) and thereby increases discoveries. Gold exploration is similar to a multi-stage investment game as modeled in Ewens et al. (2014). In this process, firms must invest certain resources before they know whether a particular area of investment might be lucrative. Once a better signal of a region’s potential has been identified, firms can commit further investments, before gains are realized. However, these early (and risky) costs of exploration are significant and might deter upfront investment. However, if the basic knowledge is publicly provided, it might provide firms with a better signal of which experiments are likely to be fruitful at a very low cost, lowering risk. In my context, public Landsat maps provide a better signal of the prospectivity of a certain target region at a relatively lower cost, as compared to the case where firms have to make private and costly investments in order to learn more about a potential discovery in the target zone. I, therefore, argue that public knowledge lowers the cost of experiments and induces a higher level of experimentation increasing the overall level of successful innovative outcomes. This prediction is supported by empirical evidence complementary to the model in Ewens et al. (2014) showing how the arrival of cloud computing services led to a lowering of the cost of experimentation, and increased the number of innovative ideas financed and overall levels of innovation in the internet sector of the economy (Ewens et al., 2014).

The reduced cost of experimentation channel also provides predictions for the differential effects of the public investment in basic knowledge across different types of firms and regions. While a long literature has analyzed the impact of public support for basic knowledge on the private-sector, as has been noted, “surprisingly ... there is no study that offers reasons to expect firm size to play a moderating role.” (Arora and Cohen, 2015). I use this variation across firm types as well as regions around the world to test the differential impact of the Landsat program across these margins and find evidence for the experimentation channel through which publicly provided knowledge affects industry outcomes.

First, how will the implications of freely available mapping information differ for larger, “senior” firms in the industry as compared to smaller, “junior” firms? Larger firms are more able to make significant investments in basic research needed for early-stage experimentation, such as large-scale mapping surveys in prospective regions. This is because they are able to spread the fixed cost of basic knowledge (human capital and equipment, for example) across many different types of projects and regions (Cohen and Klepper,
Smaller firms, on the other hand, have significant difficulty in making such investments. This is partly because such investments are relatively more expensive for smaller firms, but also because of they face higher capital constraints (Kerr and Nanda, 2009; Howell, 2014) which make it harder to finance risky investments in early-stage exploration. Similar to this intuition, Arora and Cohen (2015) sketch a model where they show that, under various conditions, public support for R&D has a lower effect when the average firm size within an industry is larger. Therefore, in the case of the Landsat program, it is likely that while the larger firms have invested in maps of prospective regions even before the public investment, smaller and more entrepreneurial “junior” firms are likely to find these maps to be marginally more valuable. Therefore, we should expect, basic knowledge from public mapping programs to disproportionately privilege discoveries from junior firms as compared to senior firms.

Second, the reduced cost of experimentation driven by the Landsat mapping effort also predicts where discoveries are likely to take place, in addition to who is likely to make these discoveries. Specifically, if the role of Landsat information is to reduce the costs of very early-stage experiments for later stage financing, we should expect the positive effects of the mapping program in regions where local institutional conditions are supportive of early-stage experimentation. In such regions, successful small-scale experiments would be financed by external capital because of low financing risk and capital-constraints, especially for smaller firms. Specifically, we expect that the impact of the public mapping effort should be concentrated in regions with a high quality of local institutions (North, 1990; Acemoglu et al., 2000) as measured by variables such as the degree to which property rights, taxation, and legal institutions encourage investments in early-stage experimentation enabled by publicly-provided basic knowledge. These are the regions where one would expect the benefits of early-stage experimentation to accrue given the low level of financing risk for third-party investors. On the other hand, in regions where local institutions do not support early-stage experimentation, we should see the effects of basic knowledge to be muted.

Taken together, if publicly-provided knowledge encourages discoveries in the private sector by lowering the cost of early-stage experimentation, we should expect these benefits to disproportionately benefit smaller firms and in regions with a higher quality of local institutions. Apart from helping clarify the channel through which public mapping affects industry outcomes, the mechanisms proposed helps identify potentially important distributional consequences of public funding of basic knowledge. Specifically, if public support for basic knowledge, in addition to supporting the overall levels of innovation in the private-sector, also affects productivity gaps between regions and firms. Public knowledge is predicted to help decrease gaps between smaller and larger firms, reducing inter-firm inequalities and encouraging entrepreneurship, while

\[\text{Note that while this prediction is in line with the theory that basic knowledge support early-stage experimentation, it contradicts another where the presence of basic knowledge is especially helpful for institutionally-poor regions who lack other support mechanisms for innovation. In other words, public investments in basic knowledge complement rather than supplement the role of local institutions to encourage innovation.}\]
also increasing pre-existing differences in productivity between regions with higher and lower quality of institutions. The gold exploration industry and the Landsat mapping experiment offer a fascinating setting to investigate this theory.

3 Empirical Setting

3.1 Landsat program

Program details: Landsat is the first and longest-running program to provide images of the Earth from space. Launched in 1972, the Landsat program has overseen seven satellite launches that have all provided “medium resolution” images of the Earth through multi-spectral cameras while revolving around the Earth at a height of about 900km above the Earth’s surface. Each image from the first-generation Landsat program covers an area of about 185km × 185km, and 9493 satellite images are required to cover all of Earth’s land-masses (not including Antarctica and Greenland). It is important to note that these images were significantly lower resolution than modern day satellite imagery (including modern Landsat images) which cover a much smaller land-area in a given image. For the purposes of this paper, I divide up the Earth’s land surface into 9493 “blocks,” each of which corresponds to a Landsat image location, and these blocks together constitute the area under study. In other words, the unit of analysis (the size of a block) is analogous to the size of Landsat imagery, rather than being artificially imposed.

The focus of this paper is the first generation of satellites in the Landsat series (Landsats 1, 2 and 3) operational between 1972 and 1983. It was not possible for NASA officials to significantly change the orbits of these satellites, however, program operators usually controlled what locations were prioritized for data collection through regular instructions issued to the satellites. The Landsat satellites orbited the surface of the earth every 18 days,\(^{10}\) so in principle, it was possible to take repeated images of every location on earth at that frequency. However, as the Landsat literature notes “The ill-founded but frequently-held assumption that Landsat-type sensors are operated continuously as they orbit the Earth is not true” (Goward et al., 2006). In practice, as I will discuss in Section 4, many regions were left unmapped for almost a decade after the launch of the program because of difficulties of collecting, storing and relaying data back to NASA.

The Landsat imagery that was successfully collected was relayed to the Earth Resources Observation and Science (EROS) center in Sioux Falls, South Dakota which was established to collect and distribute these data to follow-on investigators (an acted as a central distribution source similar to the “biological resource centers” (Furman and Stern, 2011) which distribute biological specimens). These data were from two sensors that captured information in both the visual spectrum as well as the electromagnetic spectrum. The EROS

\(^{10}\)http://landsat.usgs.gov/about_landsat1.php
data center distributed these data (usually as tapes or printed images sent by physical mail) under the “open skies” mandate, which allowed governments to collect information globally, but required that the captured information be distributed at a reasonable cost and without discrimination to all nations without intellectual property considerations. Given that all imagery was collected at the EROS data center, by studying the archives of this institution I am able to track information about the satellite images directly, including the location of blocks, when they were mapped, and the quality of the mapping effort including a measure of cloud-cover at the image level. The prices for these data, at launch, ranged from about $10 for a 10-inch negative, to about $50 for a 40-inch color photograph (Draeger et al., 1997). According to one estimate, the cost of the program at launch was approximately $125 million (Mack (1990) pp.83). Note that individual gold discoveries can often be worth hundreds of millions of dollars, and it is interesting to note that even one additional discovery caused due to the Landsat program might justify the costs of the program.

3.2 Gold Exploration

Gold is the second most intensively explored natural resource after oil and gas, and gold mining is a complex, capital- and time-intensive process. Even though the Landsat program had implications for a number of different natural resources, my focus is on gold mining because of its relative size and importance in the mining sector, as well as for reasons of data availability.

A. Gold Exploration Technology: The process of exploring for gold resembles a multi-stage investment game (Kerr et al., 2014), where in each stage the exploration firm makes increasingly larger commitments in order to reduce uncertainty about the potential value of target region. Specifically, organizations exploring for gold hire a team of geologists who analyze both public and proprietary mapping information to decide on a “target region.” Once targets are identified, more physical, chemical, and imagery data is usually collected in the target region using both field sample collection and aerial surveys. These data are often company secrets (Hilson, 2002), obtained from archival and government mapping archives, or are collected through contractors and third-party agencies at cost. The exploration firm will use these mapping datasets to identify promising prospects, drill holes in the surface to confirm the presence of ores, and identify the economic potential of a target. Each stage of the process involves significant investments ranging from approximately $2 million per project per year for very early-stage prospecting work to figures of $5 million for advanced exploration and upwards of $1.5 billion for mine development and construction (Branch and Communications, 2009).

The payoffs for this exploration could be as much as over a billion dollars per discovery (Holdings, 2013), although there is wide variation in this number. Organizations exploring for gold include large firms that

\[11^{11}\text{My primary interviews suggest that the data on the use of these images by firms was highly sensitive and has since been destroyed (Personal Communication, March 24, 2015). As such, it is unavailable for use in this research.}\]
both operate mines and invest in exploration (the “Seniors”), small firms mostly funded by risk capital that are purely in the exploration business (the “Juniors”), and government geological agencies (Schodde, 2011). For the purposes of this paper, government agencies will be treated to be a part of the “Seniors” group.

B. Satellite Imagery and Exploration: After its launch in 1972, there was a gradual understanding of the utility of Landsat imagery to understand the Earth’s geology and consequently for mining. A number of geologists and academics published papers (Rowan, 1975; Vincent, 1975; Rowan et al., 1977; Ashley et al., 1979; Krohn et al., 1978) that demonstrated how satellite imagery could be used to generate targets for exploration. Landsat imagery dramatically reduced the costs of early-stage exploration because they allowed geologists to look at large swathes of the Earth’s surface and enabled them to spot large geological features that could have been otherwise invisible. Satellite maps also enabled academic and industry geologists to update maps of regions around the world to include previously unknown faults and lineaments in the Earth’s surface. Accurate knowledge of faults and lineaments is crucial for geologists because mineral resources often occur along these features. Landsat, while far from perfect, provided another important tool for firms to reduce uncertainty in the exploration process and to potentially reduce the costs of exploration. The question of whether this information was previously unknown to firms and whether it proved to be economically valuable is the empirical question that is the focus of this work.

It was unclear whether the publicly-provided Landsat information would prove to be useful or duplicative for gold exploration because it was only one among many different options for the provision of mapping information. While Landsat was the only available source of satellite mapping information, aerial information from mapping surveys conducted from airplanes were quite common (Spurr, 1954). Mapping hundreds of square miles from airplanes was considered expensive, and they were often deployed in a more precise fashion when targets were well defined. Further, it was also possible to replicate Landsat information by launching a new, satellite-based mapping program in the private sector given the existence of commercial private-sector satellites in the telecommunications industry at this time. In fact, commercial satellite imagery did arrive in the late 1980s through the launch of the Satellite Pour Observation de la Terre (“SPOT”) satellite system (Chevre et al., 1981). SPOT provided satellite imagery through a commercial, “for profit” model and was launched by Spot Image, a French public limited company. Satellite imagery is presently provided by a number of private-sector companies, in addition to a number of separate government-run agencies. In this paper, I analyze a period in the history of this industry when the main alternative to Landsat maps was privately collected aerial images or a hypothetical privately-financed satellite mapping program.
4 Data and Research Design

Conceptually, I’m interested in four different kinds of data to help identify the relationship between new maps and the discovery of new gold deposits. All data is linked to a block or a 100 sq. mile patch of the surface of the earth imaged by one Landsat image. First, to quantify the timing and spatial variation in Landsat coverage, data on satellite images including mapping date, location, and quality (cloud-cover) is required. Second, a comprehensive list of all major discoveries, along with discovery location and firm-type (junior or senior) is essential to quantify the main outcome variables. Third, I am also interested in covariates at the block level, including some measures of (a) the prospectivity of the block in terms of gold mining potential and (b) the local-weather conditions in terms of average cloud cover, to help assess selection issues and for instrumental variables analysis. Finally, in order to assess variation in the impact of Landsat maps by regions, I am also interested in collecting measures of national income as well as the quality of different local institutional policies across different regions. This section describes the study’s data collection process in further detail.

4.1 Data

A. Landsat Coverage Data: I construct data on Landsat coverage from the USGS EROS data center’s sensor metadata files. These data provide a list of all images collected by the Landsat sensors, including the location being imaged, the date the image was collected, and information about the quality of the image, including an assessment of cloud coverage in the image (Goward et al., 2006). I use these data to construct my main independent variables at the block-year level. First, for each block, I record the first time that it was mapped by the Landsat program to form the Post Mapped_it indicator variable. The data were made available for follow-on use right after they were available at the EROS data center, and there were no significant delays in disseminating this information to downstream users. Similarly, I construct a variable Post Low – Cloud_it which is an indicator variable expressing whether a block has received a low-cloud image (i.e. an image with less than 30 percent cloud cover). I choose the 30 percent cutoff (Goward et al., 2006) because remote-sensing specialists indicate that images with over thirty percent cloud cover in imagery are usually unusable in practice. The results are not sensitive to the particular value of this cutoff choice (as shown in Table C.1).

B. Outcomes (Dependent Variable): As far as outcome data are concerned, it is a non-trivial exercise to detect gold discoveries because of the lack of a standardized disclosure or database that tracks such discoveries. I worked with a private consulting firm to create a database that provides the date, location and additional details about economically significant gold discoveries reported since 1950. These data have been

12http://landsat.usgs.gov/metadatalist.php
collected using press reports, disclosure documents, and other industry sources over a period of many years. While this database is unlikely to have 100% coverage, estimates from the data provider suggest that about “93–99% of all valuable discoveries” are included. See data appendix A for more details about this data source and for more detail on how discoveries are defined, and how the date of discovery is coded.

Using micro data on all available discoveries, I first match each discovery to a specific block-year using geographic coordinates in my data. Having performed this matching, I then aggregate all discoveries within a given block-year and conduct my analysis at this level. In practice, in all but 49 cases, a block-year experiences either one or zero discoveries and multiple discoveries in the same block-year are rare. Accordingly, the main outcome variable for my analysis is Any Discovery, which is an indicator variable for whether a discovery was made in a given block-year. In total, 460 unique blocks have reported a total of about 740 significant discoveries in this period of forty years. A map of the blocks making these discoveries is provided in Appendix Figure C.1. Further, for each discovery, the database lists the names of one or more entities responsible for the discovery and a classification of whether these firms are “juniors” or “seniors”—an important dimension along which the industry classifies exploration firms. The term juniors refers to “those companies that have limited (or no) revenue streams to finance their exploration activities. Instead, the principal means of funding exploration is through equity finance.” In my classification, I list “seniors” to be all other exploration companies which are not juniors. Seniors, therefore, include firms who finance exploration through existing revenues from production activities (usually through operating mines), and state-owned mining enterprises. Seniors can be thought of as larger, older firms with pre-existing operations in the gold-mining sector. The classification scheme I employ is appropriate because of our interest in identifying a sector of the industry which is likely to be capital-constrained and might benefit from the cheap opportunities for early-stage experimentation from Landsat mapping information.

C. Block-level Covariates: Measuring Prospectivity and Cloud Cover

In addition to the Landsat coverage data and data on discoveries, I also collect data from a number of different data-sets at the block and block-year level, to help assess selection issues and to implement my IV strategy. First, I develop a measure of scientific interest in the area of gold geology at the block-year level. This is useful because past work has shown that the scientific literature has an important role in guiding technological search (Fleming and Sorenson, 2000). Accordingly, as a first step, I compile a list of about all 3500 publications related to gold exploration from Scopus that matched my search criteria, which provides a relatively complete index of all major scientific publications. Specifically, I search for terms related to gold mining in journals that belong to the category of “Earth and Planetary Sciences” and “Environmental Science.” For each publication, using a “geo-parsing” algorithm, I identify all the geographical entities referenced in the title and abstract of the article, typically the region of the field site of the study. For example,
for the article “Glacial fans in till from the Kirkland Lake fault: a method of gold exploration” (Lee, 1963), the geo-parsing algorithm would identify “Kirkland Lake” as a geological feature and a separate geocoding algorithm would provide the exact latitude and longitude of the feature, which can be used to match to a given Landsat block. Using these data and the date of the publication, I link the observation to a block-year observation in my dataset. This procedure helps me calculate the total number of gold-related publications linked to each block-year as the main covariate of interest, allowing me to create a \(P_{ubs_{1k}} \) measure which captures the time-varying level of scientific research about a given block in the study period.

Second, I use the “Global Earthquake Hazard Frequency and Distribution” database (Dilley et al., 2005; CHRR and CIESIN - Columbia University, 2005), which provides a census of seismic activity for constructing a block-year level measure of earthquake frequency. Geological research has shown that gold mineralization is often associated with earthquakes and related structural activity in the Earth’s crust (Weatherley and Henley, 2013). These data capture time-varying measures of seismic activity at the block-year level. I use these data combined with data on scientific publication data to create a gold “prospectivity” score (the potential of a block to contain gold) at the block-year level. In order to construct this score, I regress total gold discoveries before 1972 in a given block on total gold-mining related publications in this period as well as average number of earthquakes and then use the fitted values to predict the likelihood of gold-discovery in the post-Landsat era at the block level. As show in the scatterplots in Appendix Figure C.2, both the level of publications as well as earthquake activity prove to be reasonable predictors of gold discovery at the block level, providing confidence in the validity of the prospectivity score measure.

As a final step, I use data on average cloud cover at the block-level as the basis for an instrument for the timing of Landsat mapping. These data are derived from the MODIS satellites by NASA and measure the average level of cloud cover in the year 2005 at a resolution of 5km X 5km (MODIS Atmosphere Science Team, 2005). These data provide a reasonable proxy for the average cloud cover that any block experiences in a given year, and thereby a good measure for the probability that Landsat map might have been obscured by clouds. I match these data and create a measure of average cloud cover percent corresponding to each Landsat block. This measure is employed in the instrumental variables specifications and a map of this measure at the block-level is presented in Figure C.4.

D. Measuring Income and Institutional Quality:

Finally, I also collect data describing regional income and the institutional environment in order to explore the differential impact of Landsat across these margins. First, I match each block to the respective country that it belongs to. For blocks that belong to multiple countries, I match them to the country in which most of their area lies. For each country, I collect data on the 5 “income group” classifications as defined by the World Bank including low income, lower middle and upper middle income (which I define as being in the
lower tier of the income distribution) and high income (OECD and non-OECD) countries, which I define as being in the upper tier of income distribution. I examine the differential effects of the Landsat program across these two broad categories, with the idea that countries in the higher tiers of the income distribution are more likely to provide institutional conditions that support experimentation.

Second, I delve deeper into the idea that a region’s economic environment is correlated with the ability of local institutions (Acemoglu et al., 2000) to support experimentation. Notably, I am able to collect an industry-specific measure of local institutions from the “Survey of Mining Companies” conducted by the Fraser Institute (McCaun and Fredricksen, 2014) which directly measures whether industry participants perceive whether local institutional conditions support early-stage exploration. While the survey has been conducted annually since 1997, for more comprehensive coverage, I use the 2014 edition, which contains information on over 122 different jurisdictions around the world – including provinces in major mining countries like Canada, Australia, USA, etc collected from surveys administered to over 4200 managers in the industry. The survey was designed to ask managers about the level of support for exploration in different jurisdictions and regions were given a “policy perception index”, based on responses to 15 different questions about the likelihood of local institutions in supporting experimentation including the strength of property rights, regulatory duplication, uncertainty of environmental regulation, taxation and legal institutions etc. I rank jurisdictions by their rank on this index and test for differences in the impact of Landsat mapping between above- and below-median regions.

A key assumption with the Fraser Institute survey measure is that local institutional conditions do not change significantly in response to variation in the Landsat effort. In order to address this issue to some extent, I use a pre-Landsat measure of institutional quality as well. This measure is derived from the Polity IV Project (Marshall and Jaggers, 2002) which codes annual information on the level of democracy at the country level. Countries are ranked on a scale of -9 to 9, where a negative number indicates an autocratic rule while positive number indicate democracy. I classify countries as having above-median levels of democracy based on whether they have a positive score in the Polity IV dataset for the latest available year before 1972.

E. Summary Statistics: Table 1 provides a list of key variables used in the quantitative analysis and summary statistics for the sample. Panel A provides summary statistics for key variables that vary at the block-year level. The main outcome variable is Any Discovery, which is an indicator variable that is set to one if a new gold discovery is reported in a block-year. This variable is scaled by a factor of one-hundred for legibility throughout the analysis. The mean of this variable, 0.188, can be interpreted as the percentage probability that a discovery is reported in a block-year. Any Junior Disc is set to one when Any Discovery is set

13 The survey received 485 responses (response rate of 11.5%) and firms in the survey reported a collective exploration spend of about $2.5 billion in 2014, of a total expenditure of about $4.5 billion dollars in 2014 (Carlson, 2014), and represented nearly all significant organizations in the exploration industry.

14 99.99% of the sample reports either one or zero discoveries, and so the very small number of block-year observations that report
to one and at least one discovery was reported in a block-year by a junior firm. On average, 0.038% of block-year observations report a junior-led discovery. Panel A also provides summary statistics for the key independent variables, *Post Mapped* and *Post Low — Cloud* which are indicator variables that are set to one if a block has been mapped or mapped with a low-cloud image respectively by the Landsat program. Note that there is a small percentage of blocks which are never mapped by the first generation of the Landsat program under study. For these blocks, the *Post Mapped* and *Post Low — Cloud* variables are always set to zero, although the results are robust to excluding these blocks altogether (as demonstrated in Table C.4).

Panel B provides summary statistics for variables that do not vary over time across blocks. These data indicate that about 4.8% of the blocks ever reported a discovery, and about 3.9% of these blocks reported a discovery after 1972, the year when Landsat was launched. These data also show that the median block is mapped by a low-cloud image in 1972, however there is a long tail of blocks that remain unmapped till 1990. These data also describe the variable *Avg. Annual Cloud Cover*, which encodes the average cloud cover in any given block in an average year. The median block has a cloud cover measurement of 67.6%. The instrument I employ in the IV analysis is based on this information, although the instrument itself interacts this cross-sectional variable with a time-varying variable for program operation in the continent in which the block is located.

4.2 Research Design

We are interested in the impact of the Landsat maps on gold discovery. In order to identify this impact, an ideal experiment would randomly assign different quantities of Landsat imagery to different parts of the world and measure its impact on exploration outcomes. Comparing treated and control regions over an extended period of time would allow the researcher to make an assessment of the impact of Landsat data investments on gold discoveries. In this study, I use a differences-in-differences specification to approximate this ideal experiment.

A. Differences-in-Differences Specification: In order to implement the differences-in-differences specification, I first establish (in the next section) significant variations in the timing of Landsat imagery in different regions of the world. Appendix Figure C.3 provides an example of the kind of variation that I exploit for this specification. A simple comparison of the trend of gold discoveries in regions with early coverage with other regions provides a first estimate of the impact of Landsat mapping on discovery. While this comparison could be illustrative, it might be potentially misleading if regions mapped early are significantly different in terms of their potential for gold.

Motivated by this concern, the baseline, workhorse specification in this paper purges spatial differences in more than one discovery in a block-year are normalized to one with this outcome variable.
gold prospectivity using a block-level fixed effects approach and estimates the impact of the Landsat program on discovery using purely the variation in the timing of mapping efforts between blocks. By comparing blocks mapped early with those that were mapped late (or never mapped) I am able to estimate difference-in-difference regressions with block and calendar year fixed effects. This approach provides causal estimates of the impact of Landsat maps on discovery under the limited assumption that the timing of the Landsat mapping effort is uncorrelated with an evolving understanding of the gold prospectivity of different regions. While the timing of the Landsat mapping effort was not completely random, I motivate both qualitatively and quantitatively that it was unrelated to the gold-discovery potential of different regions.

B. Instrumental Variables:

While a number of specification checks and qualitative fieldwork suggest that the timing of blocks was unrelated to the evolving prospectivity of different blocks (a key assumption in the differences-in-differences estimation), I present a set of results that uses another exogenous source of variation – cloud-cover. Conceptually, the basic idea is to use the fact that some regions (for example, Los Angeles) are rarely cloudy, while others (for example, Seattle) have a significant amount of cloud-cover, to generate variation in the timing of the mapping effort.

Specifically, I use a variable measuring cross-sectional variation in the average cloud cover in different regions interacted with a an indicator variable that equals one if the Landsat program is operational in the continent in which the block is located as the instrument in my analysis.15 This interacted variable is necessary because the purely cross-sectional cloud-cover variable is absorbed by the block-fixed effects in the analysis. A map of the average cloud cover by block is provided in Appendix Figure C.4. The basic intuition for this idea is simple. Once the Landsat program has began collecting some images in a given region, low-cloud blocks are more likely to receive low-cloud imagery earlier as compared to blocks with extensive cloud cover. This is partly because these blocks are harder to image because of cloud-cover, but also because NASA administrators anticipated low-cloud cover and imaged such blocks less frequently. The IV analysis then evaluates whether the instrument predicts the timing of the mapping effort and consequently the timing of gold discovery. While the baseline panel specifications help to establish the main effect, these IV estimates provide a separate way to estimate the impact of Landsat mapping on regional gold discovery (while preserving the block and year fixed effects) and helps provide additional confidence in the difference-in-difference results. While this section provides intuition for the IV strategy, please see the empirical results section which discusses the empirical specification as well as the estimates in more detail.

C. Additional Robustness: Finally, I also provide a number of additional robustness checks for the baseline analysis. This includes excluding the USA from the analysis (because NASA was focused on good coverage

15 As defined by whether at least 2% of all blocks in a continent receive any images.
in the US), excluding USA, Canada and Australia (the top three producers of gold), excluding the USSR and excluding blocks that had already reported discoveries before 1972 from the analysis. I also drop subsamples of blocks depending on their Landsat mapping status – including analyses where I exclude blocks mapped in the first two years of the program (which form the bulk of the sample), as well as excluding a small number of blocks that were remained unmapped by the first generation of Landsat satellites. Further, I also conduct a placebo exercise where I replace the year in which the block first received a Landsat image with a randomly generated year after 1972 as a further robustness check. I also test whether the results are driven by the choice of the start and end year for the panel (1950 and 1990), by the definition of “low-cloud” in terms of cloud cover percentage, by blocks mapped in the first year of the program as well as by adjusting for spatial dependence in the clustering of standard errors. Finally, I also implement a cross-sectional regression specification that analyses the relationship between Landsat delays and gold discovery without block fixed effects, but with detailed controls for gold prospectivity and reasonably stringent subregion, continent or block-group fixed effects. The empirical results section discusses these robustness tests in more detail.

4.3 Landsat coverage and selection issues

Before the validity of the differences-in-differences specification is established, it is important to investigate the assumption that the timing of the mapping effort was unrelated to the changing prospectivity of different regions in terms of their gold potential. While the block and year fixed effects control for static, time-invariant factors that affect discovery, the possibility that mapping was correlated with changing trends in gold potential remains a significant concern. In this section, I establish that the concern that the timing of the mapping effort was related to gold discovery trends is unlikely to be a major impediment in my setting using both interview and archival data, as well as quantitative selection analysis.

A. Qualitative Evidence:

A few recent studies analyzing Landsat holdings (Draeger et al., 1997), have found significant gaps in coverage and have investigated the reasons for these gaps. The overarching conclusion from these studies is that the gaps are likely related to (a) administrative decisions to focus on complete coverage of the continental United States and (b) technical failures in mission operations (Goward et al., 2006). As this paper notes, this variation was both unexpected and unnoticed till quite recently.

What we had not expected to see in the coverage maps were the variations in the geographic coverage achieved from year to year ... As we investigated further, we found that technical issues such as the on-board tape recorders on Landsats 1, 2, and 3, which typically failed early in the missions, may have caused the annual or seasonal gaps in coverage .. the options for downlinking acquired data to the ground stations decreased as on-board Tracking and Data Relay
Satellite (TDRS) Ku-band and direct-downlink X-band systems started failing. (Interview, 8th April 2015)

In addition to these scientific studies and reports, I also interviewed some of the key program administrators who were responsible for Landsat mission planning in the 1970s as part of this study. They confirmed that, while it was possible to program the regions where Landsat would collect data, significant variation in Landsat coverage was due to technical errors:

All the satellites relied on recorders, wideband videotape recorders, they were all cassette tape.
If you remember cassette tape, they would get worn-out, they often failed before their intended design life ... we have a lot of data that is listed as not quality. (Interview, 6th February 2015)

They also indicated that the Landsat planning team was deliberately insulated from firms in the private sector (like exploration companies) because, as a government agency, NASA did not want to be seen to be catering to the needs of a select few. They stated that the mission was primarily focused on complete coverage of the United States, and while global coverage was desirable, the program administrators acknowledged “that’s the one that ended up suffering the most” (Interview, 8th April 2015).

Finally, in addition to the specifics of mission planning (which were unrelated to gold exploration) and technical failures, variation in coverage was also due to the poor quality of satellite images that were rendered unusable due to significant cloud cover. To this day, a central challenge in using satellite imagery is the presence of clouds between the satellite sensor and the land surface being imaged. According to geologists and remote-sensing scientists, an image must have less than 30 percent cloud cover (Goward et al., 2006) to be seen as useful for analysis. This requirement meant that regions that are cloudier than usual were often harder to map than regions where cloud cover is not an issue. For example, one of my interviews validates that some regions were either not mapped, or were mapped at a later point in time because it was difficult to get cloud-free imagery:

our ability to predict clouds [is limited] ... everything comes in big fronts, especially around the equator, where there are convector, pop-up storms, and no predicting when or where they are, after a few tries you might end up with only about one or two scenes that are very clear. (Interview 22nd November, 2014)

These facts suggest that the timing of the arrival of cloud-free maps seems to follow an even more random process than the timing of the mapping effort. Motivated by this fact, in the differences-in-differences
research design, I will use the timing of the arrival of cloud-free imagery (in addition to the timing of the mapping effort) to disentangle the role of Landsat from other confounding factors. Further, the IV specification will also use the average cloudiness in a given region to instrument for this timing variable.

B. Quantitative Evidence:

While the interviews and the archival analysis are helpful in establishing that the timing variation in mapping activity and the arrival of cloud-free imagery was not directly linked to trends in the gold exploration industry, in this section I test these claims quantitatively. First, Figure 1 provides a clear map showing the timing of the mapping effort across blocks around the world (Panel A), as well as a histogram of the years in which blocks were first mapped by the Landsat program (Panel B). As is evident from this evidence, (a) blocks were clustered in terms of whether they were mapped early or late (although there is significant variation) and (b) a majority of the blocks were mapped for the first time in the first two years of program operation. These patterns make it important to examine the relationship between the timing of the mapping effort and other variables that could confound the analysis, with a special focus on time-variant variables at the block-level (given the use of block fixed-effects in all of my analyses).

First, a simple time-series comparison of average gold discoveries between blocks that received Landsat coverage earlier as compared to other blocks is represented in Figure 2. Blocks “Mapped Early” are all blocks that received a Landsat image for the first time before 1974. As the figure illustrates, discoveries in blocks mapped early and late had fairly flat and parallel growth rate before 1973 when Landsat data was made available. After this date, both time series appear to show an increase in gold discoveries, but the blocks mapped early show a quicker rate of growth as compared to blocks mapped late. This analysis provides some preliminary evidence to suggest that early Landsat mapping had a large impact on gold discovery. However, while there do not seem to be any trend differences in trends between early and late blocks before the launch of the Landsat effort, there remain some differences in levels that could be a concern for the analysis.

Table 2 Panel A further investigates these level differences between mapped-early and mapped-late blocks. The data indicate that mapped-early blocks are slightly more likely to report discoveries before 1972 (even though this difference is not statistically significant), have higher prospectivity scores, and are more likely to have gold-mining related publications and greater earthquake hazard. While in theory, these level differences are not directly problematic for the difference-in-difference specification, the baseline DD specification will include fixed effects at the block-level to flexibly control for all cross-sectional time-invariant differences between early and late blocks.

To test the validity of the IV specification, Table 2 Panel B, compares regions that typically have a low level of cloud cover, with regions that are usually cloudy. Contrary to Panel A, these data show that these two types of blocks are comparable in the cross-section in terms of the number of discoveries before 1972, and
the prospectivity score.16 This analysis provides some preliminary evidence to suggest the validity of the IV strategy. The results section will investigate the exclusion restriction more formally.

Finally, while it is useful to compare cross-sectional data for blocks that were mapped early and late, it is also useful to examine these two types of blocks in terms of time-varying variables. To see this, consider Figure 2, which compares blocks mapped in the first two years of the Landsat mission (before 1974), with blocks mapped later (after 1974 or never). Panel A compares these two types of blocks in terms of the main dependent variable (the probability of reporting a discovery), while Panel B compares them across two time-varying variables that are predictive of discovery, scientific interest and the rate of geological activity as predicted by the number of earthquakes. These charts are also reassuring because they not only indicate no changes in trends between these two groups of blocks in terms of discoveries, publications or the probability of earthquakes, but also indicate few level differences. This evidence provides us with confidence that the main difference-in-difference specification is providing estimates from reasonably comparable groups in terms of trends.

Combined, the qualitative and quantitative data provide confidence in the validity of both the difference-in-difference specifications that exploit the differential timing of the mapping effort and the timing of cloud-free mapping as well as the instrumental-variables strategy that exploits the cloudiness of different regions.

5 Results

5.1 Did Landsat Boost Discovery?

A. Baseline Regression Specification: I now analyze the impact of Landsat coverage on gold discovery in a regression framework. The sample is constructed as follows. I divide all of the land-masses on Earth into 9493 blocks, each of which corresponds to a Landsat imaging location. For each block, I collect data on gold discoveries between 1950 and 1990. I then construct measures of Landsat coverage as illustrated in the previous section.

I use OLS to estimate the following regression specification using the block-year level panel:

\[Y_{it} = \alpha + \beta_1 \times \text{Post}_{it} + \gamma_i + \delta_t + \epsilon_{it} \]

where \(\gamma_i \) and \(\delta_t \) represent block and time fixed effects respectively for block \(i \) and year \(t \). \(\text{Post}_{it} \) equals one for all blocks after they have either been mapped or have received an image with low-cloud cover. This specification compares the difference between blocks that have received mapping information, with blocks

16 There seems to be some difference in the number of publications. However, the difference is in the opposite direction to what would be a concern for the IV specification, i.e. cloudier regions have a higher level of publications as compared to less cloudy regions.
that have yet to receive maps, in a differences-in-differences framework. If blocks that receive early coverage following the Landsat launch do indeed report more gold discoveries earlier, then we should find that the difference-in-difference estimate β_1 is positive. This specification also includes controls for block and year level fixed effects. Block-level fixed effects difference out level differences in underlying potential for each block (a significant concern in this setting) and year-level fixed effects difference-out time-varying environmental factors, such as gold price, which could significantly influence discovery. It should be noted that there was a large run up in gold prices in the early 1970s17 which the year fixed effects help to control for, among other time-varying global trends such as improving extraction and exploration technology. Further, the distribution of the outcome variable (unreported) suggests that most block-years report either no discoveries or at most one discovery. Accordingly, the main outcome variable is operationalized as an indicator zero/one variable, $\text{Any Discovery}_{it}$, and I estimate all regressions using linear ordinary-least-squares (OLS) models. All my specifications cluster standard errors at the block level, given the concern that discoveries within blocks are likely to be correlated over time. In additional robustness checks, I include more general clustering (for example at the country and block-group levels) that takes seriously spatial proximity between different blocks and find that the results are generally robust to these additional restrictions (see Table C.2).

Table 3 presents estimates from this regression for both the Post Mapped_{it} and $\text{Post Low – Cloud}_{it}$ variables. Columns (1) and (2) do not include block fixed effects, while columns (3), (4) and (5) include them. The coefficients generally reduce in size after controlling for block fixed effects, indicating their importance in this setting. The results indicate that after controlling for block and year level fixed effects, there seems to be a positive impact of Landsat coverage on gold discovery. Specifically, the estimate of β_1 indicates an increase of between 0.152 - 0.164 percentage points on average of making a gold discovery after the Landsat mapping effort, a significant increase given that the baseline rate of discovery is about 0.19%. This represents almost a doubling of the rate of discovery in treated regions. Finally, in Column (5) I present estimates with both Post Mapped_{it} and $\text{Post Low – Cloud}_{it}$ variables in the same specification. If we expect the results to be driven by information contained with the mapping and not simply the activation of the mapping program, we should expect the $\text{Post Low – Cloud}_{it}$ variable to be positive and significant. As indicated in Column (5), the coefficients follow this pattern. The estimate on the $\text{Post Low – Cloud}_{it}$ variable is 0.155 and significant (very similar to the estimate in column 4), while the estimate on the Post Mapped_{it} variable is small and not statistically different than zero. This is reassuring because it seems that the effect of the Landsat mapping depends on the arrival of a low-cloud image that contains information about the geology of a block, rather than simply the arrival of an image that may or may not be informative.

As an additional robustness check, I also estimate the above specification using negative binomial models, given the skewed distribution of the outcome variable. Results from this analysis are presented in Appendix 17http://www.macrotrends.net/1333/historical-gold-prices-100-year-chart
Table C.3. These results also echo the results from the OLS models. The coefficient of interest in the model using the Post Low—Cloud$_{it}$ variable and including both block and year fixed effects, for example, is about 0.609, which translates to about a 83% increase in the probability of discovery, similar to estimates from the OLS models. The baseline results and the robustness check, therefore, confirm the main hypothesis that the Landsat mapping effort had a significant impact on industry performance. In other words, despite strong private incentives for gold discovery and the significant investment made by firms in private knowledge before the 1970s, the Landsat program boosted discoveries in regions that benefited from publicly-provided mapping information.

B. Time-varying Estimates: I then turn to estimating the time varying impact of Landsat coverage on gold discovery. Specifically, I estimate

$$Y_{it} = \alpha + \sum_{z} \beta_t \times 1(z) + \gamma_i + \delta_t + \epsilon_{it}$$

where γ_i and δ_t represent block and time fixed effects respectively for block i and year t, and z represents the “lag,” or the years relative to a “zero year,” which marks the year when a block was first mapped with a low-cloud image.18

Figure 3 presents estimates of β_t from this regression, which measure the difference between treated and control blocks for every lag year. The dotted lines represent 95-percent confidence intervals. The figure is illustrative for three reasons. First, there seem to be no pre-existing differences in trends between the two groups, suggesting that discoveries in treated blocks were evolving at a similar level as compared to control blocks. Second, there seems to be a large and persistent increase in the number of discoveries in the two groups, confirming the effect detected in the baseline estimates. Finally, this increase seems to appear after a lag of about seven years. This delay accords well with my interviews with gold exploration companies who certify that Landsat represents early-stage exploration and is typically followed by many years of further exploration, and also with reported accounts of discovery timelines in the gold exploration industry (Branch and Communications, 2009).

C. Instrumental Variables evidence: Now, I turn to analyzing the impact of Landsat coverage on discoveries using cloud cover at the block level as an instrument for Landsat timing effort. One concern with the differences-in-differences estimate could be the assumption that the timing of the Landsat mapping effort was unrelated to the changing prospectivity of different regions. The time-varying analysis presented in Part B helps alleviate this concern significantly. As a further robustness check, this section uses instrumental-variables estimation to understand further the role of Landsat mapping on discovery.

Consider Panel A in Figure 4. This figure plots the average cloud cover at the block level collected from

18For the small percentage of blocks that never get an image, z is consistently set to zero.
weather databases and the average year in which a block was first mapped with a low-cloud image using binned scatterplots. Blocks are binned according to average cloud cover measured up to two decimal digits (i.e. 0.01 to 0.99) on the x-axis, and average first low-cloud year for each of these approximately hundred groups are on the y-axis. Panel A shows a strong positive correlation, indicating that regions with higher levels of cloud cover are more likely to receive mapping information later rather than sooner. Similarly, Panel A, Figure 2 shows the relationship between cloud cover and the average value of the Post Low-Cloud indicator variable. This scatterplot also confirms the intuition that regions with more cloud cover on average have poorer image quality as compared to less cloudy areas.

These data suggest that one could rely on cloud cover to construct a potentially good instrument to understand the role of the Landsat mapping effort on gold discovery. However, for cloud cover to form the basis for a valid instrument, it needs to satisfy the exclusion restriction. In other words, cloud cover must predict gold discovery only through its role in influencing the quality and timing of Landsat mapping, rather than through other channels. For example, if increasingly earthquake-prone regions are also more likely to be cloud-free, then we might doubt the validity of the exclusion restriction because geological research suggests that earthquake-prone regions are also useful targets for gold exploration.

Figure 4 Panel B tests whether the exclusion restriction seems plausible, although it is hard to test it formally. Panel B, Figure 1 analyzes the relationship of the prospectivity score of a block calculated based on the number of publications and the earthquake hazard index with the cloud cover of a region. Panel B, Figure 1 shows a relatively flat relationship between predicted prospectivity and cloud-cover. Similarly, cloud cover does not predict the number of discoveries of gold pre-1972, as indicated by the scatterplot in Panel B, Figure 2, a more direct test of the exclusion restriction. The IV specification relies on the cloud-cover variable and these plots provide confidence that the IV specification is likely to satisfy the exclusion restriction.

Table 4 provides estimates from a differences-in-differences specification similar to the baseline, where the $Post_{it}$ variable is instrumented by the IV. Note that because the cloud-cover variable is time-invariant and would be absorbed by the block-level fixed effects, I interact this variable with an indicator variable that equals one if the Landsat program is operational in the continent in which the block is located, and use this interacted variable as $Cloud \times Cover \times Instrument_{it}$ as the IV in my estimation. Column (1) suggests a strong first-stage between the two variables, i.e. a higher value of cloud cover indicates that the block is likely to receive a low-cloud image later rather than sooner. The IV estimates are presented in Column (2). This estimate is about 1.126—much greater than the baseline estimate. This estimate implies that compared to the average rate of discoveries in a block-year, mapped blocks are about 6 times more likely to report a new discovery, a large and economically significant effect. This large difference between OLS and IV estimates could be attributed to differences in the local average treatment effect of the IV specification. More specifically, it is is possible that the variation arising from cloud-cover is more localized than the
satellite mapping variation. This localized variation combined with large and positive inter-block spillovers could generate the patterns I observe, although I’m unable to test this hypothesis directly. In sum, I interpret these results as providing a validity check for the baseline specifications, but continue to emphasize the baseline estimates because they offer more conservative estimates of the impact of the Landsat mapping on gold discovery.

5.2 Additional Robustness Checks

A. Excluding Certain Regions: As is evident from Figure 1, the spatial variation in early mapping is not completely random. The United States is unsurprisingly mapped early in the program, confirming the qualitative findings. Further, there seems to be some evidence that parts of the USSR, were mapped early, while others were left off of the map till considerably later. Given the strategic interactions between the US and the USSR during the time period of the study, it is possible that this variation could also be problematic. In other parts of the world, notably Asia, Africa and South America, the variation seems to be more idiosyncratic. In order to address concerns that regions with problematic variation are driving the effect, I repeat the analysis for different subsamples of the data excluding these regions in turn, as described below.

First, one might be worried that the results might be driven by the US – which is both a leading producer of gold and was well covered by the Landsat program. In Table C.4, Panel A, I repeat the baseline specification completely excluding the US from the analysis. As shown in Column 1, the size of the coefficient reduces slightly but remains positive and significant. Similarly, one might be worried that the three leading producers of gold, Australia, Canada and the US might be driving the results. Panel A Column (2), presents estimates without these three countries, and while the co-efficient size reduces considerably, it is still large in magnitude and statistically significant. Similarly, given the variation over the erstwhile USSR could be considered problematic, in Column (3), I present estimates excluding blocks in the USSR altogether. The results remain largely unaffected.

Apart from excluding certain countries, it is also helpful to exclude subsamples of blocks that might be viewed as problematic. First, it might be useful to exclude blocks where discoveries had already been reported before 1972. The idea is that if these blocks were imaged early (presumably due to selection issues), then we might be worried that the Landsat effect is capturing selection. Further, a small portion of the blocks were never mapped by the first generation of the Landsat program, and these blocks might somehow be not comparable to the blocks in the main sample and it might be useful to evaluate the robustness of the results to excluding these blocks. I present estimates from both of these analyses in Panel B (Columns 1 and 2). In both cases, the estimates remain positive and significant, providing confidence in the robustness of the main effect.
Overall, the estimates in Panels A and B help to establish that certain possibly problematic regions are not dramatically influencing the estimates.

B. Excluding Blocks At Program Launch: Apart from the cross-sectional variation, Figure 1, Panel B also highlights the time series variation being exploited in this paper. As is evident from this graph, approximately 75% of the globe is mapped in the first two years of the Landsat program after which there is a significant delay for blocks which were not mapped in this early period. This is likely to due technical failures forcing Landsat administrators to severely restrict data collection and failures in data transmission after the first two years of launch (Goward et al., 2006). While this pattern is not directly concerning for the analysis, it would be helpful to establish the robustness of the finding to excluding the blocks mapped early in the program, thereby purely exploiting the variation in the long-tail of the mapping effort in the later years of the Landsat program. Accordingly, Table C.5 estimates the baseline specification excluding all blocks mapped in the first year, and the first two years of the Landsat program. When 1972 is excluded the estimates decrease slightly in size and remain significant. When the first two years of the program are excluded the estimates decrease to about 0.09 (from about 0.15), a significant reduction, and the standard errors increase as well. However, despite the large reduction in sample size, the coefficients remain positive and economically significant, although the co-efficient in Column (3) of Table C.5 is not significant at the 90-percent confidence level. This finding is reassuring because the impact of the Landsat program is preserved even when focusing on the variation in the timing of the mapping effort after the first two years of program launch, after almost three quarters of the dataset have been dropped.

C. Placebo Test (Tree-Cover and Randomized Independent-variable): In addition to excluding certain countries and blocks, the subsample analysis in Table C.4 also allows for a placebo test of the Landsat program. In particular, while Landsat is useful to divine the geology of a region for gold exploration, its utility is severely diminished in regions where tree cover obscures details of the land surface underneath, a fact that was also validated by my interviews with remote sensing experts. Accordingly, I use a dataset of global tree-cover to extract blocks which contain significant tree-cover and estimate the impact of Landsat on this limited group only. The results from this analysis are presented in Table C.4 Panel B (Column 3). As the estimates show, when restricted to regions with significant tree-cover, the impact of the Landsat program is close to zero and insignificant, implying that the informational content of Landsat maps was an important channel through which new discoveries were enabled. In a similar spirit, Table C.6 presents estimates from a placebo specification where for each block I generate a randomly generated year between 1972 and 1990 in which I assume it has been mapped. Using this alternate Post Low-Cloud variable, I repeat the analysis and estimate the effect of Landsat to be close to zero and insignificant. This is reassuring because the main estimates do not seem to depend on the particulars of the specification, rather representing plausibly causal impacts of the mapping information.
D. Cross-Sectional Specification:

A key benefit of the panel specification used in the analysis is the ability to include flexible block and year fixed effects. However, it is also possible to implement a cross-sectional specification to estimate the impact of the Landsat program on gold discovery. This specification under-emphasizes small timing differences between blocks in terms of mapping, and instead simply relates overall delays to the probability that any discovery is reported in the 20 year period following the launch of the Landsat program. The baseline specification is of the form \(Y_i = \alpha + \beta_1 \times Delay_i + \gamma_i + \epsilon_i \), where \(Y_i \) the main outcome variable is an indicator for whether any discovery was made in a given block \(i \) after the launch of the Landsat program in 1972 till 1990, \(Delay_i \) is the total difference between the year in which a block was mapped with a low cloud image and 1972, \(\gamma_i \) represents spatial fixed effects. Here \(\gamma_i \) no longer represents block fixed effects, but rather larger spatial categories (such as the continent, “subregion” or block-groups). This specification estimates the impact of delays in mapping on gold discovery within these spatial units. The estimates are presented in Table C.7 and the footnotes include more details on the estimation. The results support the basic conclusion, that delays are associated with lower probability of discovery for Landsat blocks, even in the cross-sectional specification.

E. Region-Specific Time-Trends:

An alternative story that could cast doubt on the finding could be that mapping coincides with improvement in institutional quality in various regions (e.g. the former Soviet Union), and confounds the direct effect on gold exploration. While this explanation seems implausible because it would require local conditions to change precisely around the timing of the Landsat mapping for a large number of blocks, I am able to directly test it using region-specific time-trends in the regressions specification. Instead of including a common year-specific indicator variable at the global level, this specification includes separate year-specific dummies for different sets of regions around the world.

Estimates from such a specification are presented in Appendix Table C.8 and allows us to evaluate the robustness of the baseline results to region-specific time trends. Specifically, I estimate three separate models that split the globe into regions in different ways. First, one might be concerned that countries in different income categories around the world are modernizing in different ways, possibly influencing gold exploration. Accordingly, I identify blocks as belonging to one of five different income categories (High income: OECD, High income: non-OECD, Upper middle income, Lower middle income and Low income) and introduce separate annual time trends for each of these regions. Second, I perform a similar exercise, but separate blocks by the continent that they belong to (Africa, Asia, Europe, North America, Oceania, South America), rather than their income group. Finally, I take this analysis a step further, by dividing the globe into twenty-one subregions around the world which divides the continents into even finer groups. For example, Asia
is comprised of Central Asia, Eastern Asia, Melanesia, South-Eastern Asia, Southern Asia and Western Asia. I then include about 861 indicator variables representing separate fixed effects for each of the 21 subregions over the period between 1950 and 1990. While the income-group specific time-trends do not affect the baseline estimates by much, the specification using the year-specific time trends for subregions does reduce the size of the coefficient by about half. However, the estimates still remain positive, statistically significant and economically meaningful. This exercise validates the empirical strategy and the baseline results, although it does suggest that a more conservative impact of the Landsat program taking into account region-specific trends.

F. Other Specification Checks:

Finally, in addition to the battery of tests presented above, I also present a number of other robustness checks in Appendix C. Table C.1 presents estimates for different definitions of “low-cloud” in terms of cloud-cover percentage, Table C.9 presents estimates with different start and end years for the panel and Table C.2 presents estimates with standard errors clustered at different spatial groups rather than the Landsat block. Together these robustness checks help to further bolster the validity of the baseline estimates.

5.3 Differential Impact of Landsat Across Firms and Geographies

The results from Section 5.1 and 5.2 provide strong evidence for the prediction that public investments in basic knowledge through the Landsat program boosted the total number of discoveries in regions that benefited from the program. This evidence is consistent with the discussion in Section 2.1 which argues that publicly-provided knowledge lowers the cost of early-stage experimentation for firms leading to an overall increase in the overall level of innovation in an industry. In order to further test this channel, in Section 2.2, I outline two specific predictions stemming from this mechanism which predict not only the overall impacts of the Landsat program for the industry but also the differential impacts of the program for different types of firms and regions. I now turn to analyzing these predictions in this section.

A. Juniors vs. Seniors: First, I test the idea that Landsat would be more beneficial for the “junior” sector of the industry which is more likely to have capital-constraints preventing early-stage exploration before the launch of the program. In this exercise, I estimate whether Landsat helped both juniors and seniors similarly, or whether it served to narrow or widen the performance differences between these two categories of firms. Accordingly, I estimate regressions similar to the baseline specification presented before. However, the dependent variable in these specifications is an indicator variable that is set to one if the discovery is made by either a junior or a senior firm. The estimates of β_1 from such a regression would provide an estimate of the boost to discovery provided to juniors and seniors by the Landsat program, and would allow for a comparison of whether Landsat disproportionately helped one group versus the other.
The estimates from these regressions are presented in Table 5. The estimates suggest that the impact of the Landsat program on juniors is about 0.047, while the impact for seniors is about 0.12. In other words, the total gain from the Landsat program (about 0.16% more discoveries) are split such that smaller firms make 0.04% more discoveries at the block-year level, while seniors capture the remaining 0.12%. Therefore in terms of percentage points, it seems like seniors benefit more from the Landsat mapping effort. However, when the previous market-shares of juniors in terms of new discoveries is taken into consideration, this interpretation changes considerably. Specifically, before the Landsat program was launched, juniors made only about 0.008% discoveries in a given block-year on average, while seniors made 0.0694%. This suggests that even though seniors were almost entirely responsible for the new discoveries made in this industry prior to the Landsat program, in mapped regions, juniors made one out of every four discoveries that was reported after Landsat was launched. Given these percent improvements in the likelihood of new discoveries, it seems like the Landsat program helped improve the performance of smaller firms in this industry (juniors) in terms of making new discoveries. In other words, juniors were 5.8x more likely to report a discovery in mapped regions as compared to unmapped regions, while incumbents only benefited by a factor of 1.7x. Therefore, the estimates suggest that even though seniors made a significant portion of new discoveries in mapped regions, their market position eroded considerably, and juniors were able to make considerable gains in performance. One concern with this interpretation is that seniors might be “outsourcing” their exploration to juniors. In Appendix Table C.10, I use data on joint-ventures to test this idea, and find that while outsourcing could be relevant, a majority of the junior firm discoveries represent discoveries from capital-constrained firms. The data, therefore, support the idea that not only does public investment in basic knowledge raise overall levels of discovery, but, by easing constraints around early-stage experimentation, they disproportionally support the junior sector of the industry.

B. The Role of Local Institutions Supporting Experimentation:

Further, consistent with the notion that Landsat reduces the cost of early-stage experimentation, I now turn to testing the prediction that the impact of the program is the highest where institutional conditions encourage experimentation. For example, strong property rights for early-stage exploration (a particularly important institution in the mining industry), supportive labor and environmental regulation and an efficient legal region are all deemed to be important to allow firms to conduct exploration. If Landsat encourages discovery by enabling such early-stage experimentation, then we should expect the effects of the program to be magnified in regions with a higher quality of such local institutions supporting exploration.

In order to test this proposition, I employ three different indicators. First, I rely on the World Bank Classification of nations in five different income categories: High income (OECD), High income (non-OECD), Upper middle income, Lower middle income and Low income. I test for the difference in the main effect
of the Landsat program between above-median (High income) and below-median (Upper middle, Lower middle and Low income) countries. The idea is that in countries with a higher level of income, it will easier for firms to raise capital for early-stage exploration.

Second, I rely on a survey of institutional conditions in the mining industry to obtain a direct measure of local institutional conditions supporting exploration. Specifically, I use data from the Fraser Institute Survey of Mining Companies, that surveys companies about the quality of local institutions that are specifically relevant to mining exploration (as against mining extraction) in different regions around the world. I estimate differential effects for above-median countries (i.e. countries that rank in the top-half of the institutional quality rank distribution) as compared to below-median ones on measures of institutional quality derived from the Fraser institute survey. See section 4.1 D for more details on these data.

Finally, I also employ a historical measure of institutional quality to further triangulate the evidence from the income and survey measures. One limitation with the survey data is that they are measured after the launch of the Landsat program and after new deposits have been discovered, rather than measuring the quality of local institutions when Landsat information as first provided. While measures of institutional quality before 1972 are quite difficult to obtain, I rely on the Polity IV dataset described before to classify countries as belonging to democratic versus authoritarian regimes (which the Polity IV dataset scores on a scale of -9 to 9). Importantly, these measures are available for most of the globe before 1972, which allow me to use these historical measures as a complement to income categories and the Fraser Institute survey.

The results from this analysis are presented in Table 6. In each of the three specifications, I present separate estimates for blocks that belong to countries in the top-half of the respective distribution with Column (1) using the data on income categories, Column (2) using data from the Fraser Institute survey and Column (3) using the data from Polity IV. The results indicate quite clearly that the impacts of the program are concentrated in regions in the top-half of the distribution of institutional quality, measured either through income, the Fraser Institute survey or the Polity IV dataset. Specifically, the results indicate that in terms of income categories and the Fraser survey, regions that rank below the median, see no impact of the Landsat information on new discoveries, while when using the pre-1972 Polity IV data, below-median regions do see a positive and statistically significant effect, but the size of the effect is about half as large as experienced by regions above the median.

Overall, the results on the heterogeneous effects of the Landsat program across firm types and regions are inline with the predictions from Section 2. These results support the hypothesis that the Landsat program is more useful for smaller firms and in regions that have supportive local institutions. Therefore, the theory that one channel through which the Landsat program encourages discovery is by reducing the costs of early-stage experimentation finds support in the data. Further, on a descriptive level, a striking conclusion from
these results is the fact that while Landsat seems to have reduced gaps in performance between larger and smaller firms, it seems to have made high-income regions more productive, exacerbating natural resources inequality between regions.

6 Discussion

This paper estimates the impact of the NASA Landsat satellite mapping program on shaping the discovery of significant new deposits in the gold exploration industry between 1950 and 1990. Using quasi-random gaps in coverage, I find that the availability of mapping information leads to significant new gold discoveries in regions that benefited from the early availability of Landsat information as compared to regions that did not. Quantitatively, the availability of mapping information almost doubles the likelihood of new discoveries in a region after it has been mapped. These effects are magnified for smaller firms and in higher income regions with institutions favorable for exploration, suggesting that one mechanism through which mapping enables discovery is by lowering the costs of experimentation for capital-constrained “junior” firms and in regions with lower quality of institutions. The results speak to the literature on the public-provision of knowledge goods and has direct implications for innovation in the private sector and inform policy about the provision of copyright-free information from the public sector in an increasingly digitized economy (Greenstein et al., 2013).

6.1 Implications for Welfare

Back-of-the-envelope calculations suggest that the welfare impact of the Landsat program could be large.19 For a country the size of the US (with about 3.8 million sq. miles) this translates to additional gold reserves worth about $6.4 billion USD that can be attributed to the information from the Landsat program, the first phase of which cost about $125 million USD. Further, the program also shaped discovery globally, showing how US investments in basic science and technology might have global impacts through the informational channel. The Landsat program in particular, and space science, in general, has routinely been legislated because Congress has found it difficult to justify the public expenditure on these efforts (Gabrynowicz, 2006). Even though Landsat data is regularly used in a variety of different sectors (including agriculture, land and water-use planning etc), my estimates suggest that the benefits to the mining sector alone could justify the costs. These calculations could help inform active policy debates about the value of Landsat and similar program.

19We assume that the marginal impact of additional reserves discovered through the Landsat program on global gold prices was small – perhaps because these discoveries are later exploited and mined at different rates and in response to market conditions, and do not represent an immediate and discrete increase in available gold reserves on the global market.
6.2 Limitations

While the results suggest that public investments in mapping information improve welfare, a few limitations of this study must be acknowledged. Specifically, it is possible that the impact of the mapping information is driven by the substitution of investment in mapped regions as compared to unmapped regions, rather than increases in efficiency on part of firms in the private sector. The results in Table C.4, Panel 4, which estimate limited treatment effects when Landsat maps are uninformative (tree-covered), suggest that pure substitution (where firms increase exploration investments when any Landsat map is available) is unlikely to be at play, however this concern must be acknowledged before the results are taken to policy. Similarly, it is also possible that Landsat merely sped up the rate of discoveries rather than helped make discoveries that would otherwise never have been made. Also, it is possible that exploration cost per discovery are significantly higher for smaller firms as compared to larger firms, which would reduce possible welfare benefits of Landsat, which helped shift exploration to this sector of the industry. While substitution across space and time as well as reduced exploration inefficiencies from the junior sector are both reasonable channels that reduce the welfare benefits of Landsat information, more research is needed before concrete welfare statements can be made.

Finally, while I have focused on lower costs of exploration as the primary mechanism to explain the heterogeneous impacts of mapping, a few related channels remain underexplored to explain gaps in performance between regions and firms. For example, it is possible that public maps are less useful to larger firms because they already possess higher amounts of private maps as compared to smaller firms, which might not possess such assets. Under this theory, smaller firms experience more of an information shock which might explain why they benefit more from the Landsat program. Similarly, differences in technological capabilities (Stuart and Podolny, 1996) or human capital between larger and smaller firms in adopting the new, satellite maps might also be relevant. While these explanations are possible complementary channels, without direct data on pre-existing knowledge or the technological capability of firms before the arrival of Landsat, it is difficult to shed light on this margin and remains a topic for future work.

6.3 Broader Implications for Innovation Management

On a broader level, the general finding that public mapping programs, and idiosyncratic yet widespread variations in the quality of mapping information have dramatic impacts on the geography of regional performance seems quite robust with implications for policymakers and managers in the field of innovation. For example, a related study, Serrato and Wingender (2010) exploits measurement error in Census data, another prominent national mapping effort, and finds that errors in population data have large consequences for regional growth and employment. This example along with the present case study indicate that policy-makers can shape the
development of a region through the data that they collect and the maps that they provide. Publicly-provided maps should therefore be viewed as essential tools in the innovation policy toolkit going forward. Further, even in a non-geographic sense, many large-scale publicly funded scientific projects are aimed to providing better scientific maps (such as the Human Genome Map and BRAIN initiative), and anecdotally seem to have shaped and spurred research in their respective fields. Firms and managers would do well to extract value from these sources of data and information because they could be critical components of performance for innovative firms. Further, this work suggests that founders who are interested in starting new companies might especially be able to leverage publicly and freely provided information in order to lower early-stage costs of research and development.

Given these important policy and managerial implications, opening-up the black-box of mapping as an economic activity, and understanding the antecedents of what features of the landscape get mapped and why, and estimating the consequences of this variation for economic activity seems like a topic ripe for future research.

References

7 Figures and Tables

Figure 1. Variation in Mapping Coverage

Panel A: Landsat “Blocks” and Years First Mapped by Landsat

Panel B: Time-series Variation in Landsat Coverage (First Low-Cloud Image Year)

Note: This figure illustrates Landsat blocks and the variation in their mapping over time exploited in this paper. Panel A shows the location of each Landsat block, and the color represents the year in which these blocks were first mapped by the Landsat program. For blocks that were not mapped by the first phase of the Landsat program are represented as “1983+” in dark pink. Panel B plots a histogram for the year in which blocks were first mapped with a low cloud cover images. The frequency counts of the blocks are on the left y-axis and cumulative frequency in percent is represented on the right y-axis. Blocks shown to have been mapped in 1990 are in fact blocks that I categorize as “unmapped” because they were not mapped by the first phase of the Landsat program, but were mapped later by following generations of satellites.
Figure 2. **Comparing Baseline Pre-1972 Characteristics of Blocks Mapped Early and Late by Landsat**

Panel A. Main Outcome: Average Annual Discoveries

![Graph showing average annual discoveries over calendar years from 1950 to 1970 for early and late-mapped blocks.]

Panel B. Covariates Predicting Prospectivity

- **Avg. Annual Publications**
- **Avg. Annual Earthquakes**

![Graphs showing average annual publications and earthquakes over calendar years from 1950 to 1970 for early and late-mapped blocks.]

Note: This figure explores baseline differences between early and late-mapped blocks. For both panels, difference in means of outcome variable is calculated between blocks mapped early (mapped before 1974) with blocks mapped late (on or after 1974) on a yearly basis to allow a comparison of these variables in levels and trends. The outcome variables are average of indicator variable for discovery in block-year in Panel A, while time-varying outcomes predicting gold prospectivity (average gold-related publications in mining journals and average number of earthquakes) are plotted in Panel B.
Figure 3. **Time Varying Estimates of the Impact of Landsat Intensity on Gold Discovery**

Note: This figure plots estimates (and 95 percent confidence intervals) of β_t from the event study specification specified below. On the x axis is calendar year. This figure is based on block-year observations, the coefficients are estimates from OLS models, the sample includes all block-year discoveries between 1950 and 1990 and the standard errors are robust and clustered at the block level. See the text and data appendix for additional details on variable and data descriptions.

Specification:

\[Y_{it} = \alpha + \sum z \beta_t \times 1(z) + \gamma_i + \delta_t + \epsilon_{it} \]

where γ_i and δ_t represent block and time fixed effects respectively for block i and year t. z represents the “lag”, or the years relative to a “zero year”, which marks the year when a block was first mapped with a low-cloud image (or 1990 if the block was never mapped).
Figure 4. Binned Scatterplots To Evaluate the Validity of the IV Specification

Panel A: First Stage: Cloud Cover and Image Timing

![Panel A: First Stage: Cloud Cover and Image Timing](image1)

(1) Avg. Year of First Low-Cloud Image

(2) Avg. Post Low-Cloud Indicator

Panel B: Exclusion Restriction: Cloud Cover and Correlates of Gold Discovery

![Panel B: Exclusion Restriction: Cloud Cover and Correlates of Gold Discovery](image2)

(1) Avg. Predicted Prospectivity

(2) Avg. Discoveries before 1972

Note: This figure plots the relationship between average annual cloud cover and the timing of Landsat images (Panel A) and between the average annual cloud cover and correlates of gold discovery at the block-level (Panel B). For all four charts, blocks are binned by the level of average annual cloud cover rounded to two decimal digits, and mean value of the variable on the y-axis is calculated. Panel A records the first-stage relationship between cloud-cover and the endogenous variable. Outcome variable in Panel A, Figure 1 is the year in which the block received a low cloud cover image, while the variable in Panel A, Figure 2 is the average of the indicator variable for whether a low-cloud image is available. Panel B, tests the correlates of cloud cover with other variables that could affect gold discovery. I predict a “prospectivity” score for a given block as a function of gold-mining publications (before 1972) and earthquake-risk index based on the geology of the region. A mean value of this score is graphed on the y-axis. Similarly, Panel B, Figure 2 plots the average number of discoveries before 1972 on the y-axis.
Table 1. **Summary Statistics**

Panel A – Block - Year Level

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Discovery (%)</td>
<td>0.188</td>
<td>4.33</td>
<td>0.000</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Any Junior Disc. (%)</td>
<td>0.038</td>
<td>1.94</td>
<td>0.000</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Landsat Coverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Mapped</td>
<td>0.409</td>
<td>0.49</td>
<td>0.000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td>0.381</td>
<td>0.49</td>
<td>0.000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Block-year Covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publications</td>
<td>0.009</td>
<td>0.40</td>
<td>0.000</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Num. Earthquakes</td>
<td>0.017</td>
<td>0.21</td>
<td>0.000</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Panel B – Block Level

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Discoveries</td>
<td>0.083</td>
<td>0.52</td>
<td>0.000</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Total Junior-led Disc.</td>
<td>0.017</td>
<td>0.18</td>
<td>0.000</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>l(Ever Discovered)%</td>
<td>4.846</td>
<td>21.47</td>
<td>0.000</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>l(Discovered post-1972)%</td>
<td>3.940</td>
<td>19.45</td>
<td>0.000</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Landsat Coverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year First Low-Cloud</td>
<td>1974.368</td>
<td>5.19</td>
<td>1972.000</td>
<td>1972</td>
<td>1990</td>
</tr>
<tr>
<td>Block Covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Cover(%)</td>
<td>0.208</td>
<td>0.41</td>
<td>0.000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Avg. Annual Cloud Cover</td>
<td>0.627</td>
<td>0.24</td>
<td>0.676</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Predicted Prospectivity Score</td>
<td>1.896</td>
<td>0.85</td>
<td>1.577</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Publications(pre-72)</td>
<td>0.025</td>
<td>0.66</td>
<td>0.000</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Earthquake Hazard Index</td>
<td>0.628</td>
<td>1.67</td>
<td>0.000</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Observations at the block-year level for Panel A and at the block level for Panel B. A “block” is a Landsat image or scene as defined by the Worldwide Reference System (WRS-1) which divides the planet into blocks of approximately 180km X 180km. I include all blocks that cover the earth’s landmass excluding blocks that are comprised purely of water bodies (as well as Antarctica and Greenland), resulting in a total of 9493 blocks in my sample. The period for the analysis is 1950 – 1990. See text for data and variable descriptions.
Table 2. Cross-sectional Comparison of Blocks by Landsat Coverage

Panel A – Comparison by Landsat Timing

<table>
<thead>
<tr>
<th></th>
<th>(1) mapped-early</th>
<th>(2) mapped-late</th>
<th>(3) diff</th>
<th>(4) p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discoveries (pre-72)</td>
<td>0.020</td>
<td>0.015</td>
<td>0.006</td>
<td>0.22</td>
</tr>
<tr>
<td>Prospectivity Score</td>
<td>1.925</td>
<td>1.796</td>
<td>0.129</td>
<td>0.00</td>
</tr>
<tr>
<td>Publications (pre-72)</td>
<td>0.032</td>
<td>0.001</td>
<td>0.031</td>
<td>0.05</td>
</tr>
<tr>
<td>Earthquake Hazard</td>
<td>0.683</td>
<td>0.440</td>
<td>0.242</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Panel B – Comparison by Avg. Annual Cloud Cover

<table>
<thead>
<tr>
<th></th>
<th>(1) Low Cloud</th>
<th>(2) High Cloud</th>
<th>(3) diff</th>
<th>(4) p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discoveries (pre-72)</td>
<td>0.018</td>
<td>0.020</td>
<td>-0.001</td>
<td>0.76</td>
</tr>
<tr>
<td>Prospectivity Score</td>
<td>1.893</td>
<td>1.899</td>
<td>-0.007</td>
<td>0.70</td>
</tr>
<tr>
<td>Publications (pre-72)</td>
<td>0.014</td>
<td>0.036</td>
<td>-0.022</td>
<td>0.10</td>
</tr>
<tr>
<td>Earthquake Hazard</td>
<td>0.628</td>
<td>0.629</td>
<td>-0.001</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Note: This table compares cross-sectional differences between blocks in terms of four covariates for two different subsamples. Panel A compares blocks mapped early (before 1974) and late (in or after 1974) with low-cloud images by the Landsat program. Panel B compares blocks with low amount of cloudiness (below the median value of 67%) with blocks with high amount of cloudiness. Column (3) is the estimate for the difference in means, and column (4) is the p-value for the t-test that the difference in means is significantly different than zero. Discoveries(pre-72) is the total number of discoveries made in a block before 1972. Prospectivity Score is a score for the predicted prospectivity of a block based on a regression on pre-1972 discoveries on block-level covariates that predict prospectivity. Publications (pre-72) denotes the total number of gold-mining related publications about a certain block published before 1972, while Earthquake Hazard is an estimate of how prone a certain block is to earthquakes.
Table 3. **Baseline Estimates for the Impact of Landsat on Gold Discovery**

<table>
<thead>
<tr>
<th></th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Mapped</td>
<td>0.251***</td>
<td>0.152***</td>
<td></td>
<td>0.0178</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0265)</td>
<td>(0.0294)</td>
<td></td>
<td>(0.0399)</td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td></td>
<td>0.267***</td>
<td>0.164***</td>
<td>0.155***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0276)</td>
<td>(0.0274)</td>
<td>(0.0370)</td>
<td></td>
</tr>
<tr>
<td>Block FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: Block-year level observations. All estimates are from OLS models. The sample includes all block-years from 1950 to 1990 (9493 blocks for 41 years implies 389,213 block-year observations). Post Mapped: 0/1 =1 for a block-year after the first image has been received and Post Low-Cloud: 0/1 =1 for block-year after the first low-cloud image (lower than 30% cloud cover) has been received. 1(Discovery): 0/1 =1 if a discovery is reported in a block-year. See text and appendix for data and variable descriptions.

Table 4. **Instrumental-variables Estimates for the Impact of Landsat on Gold Discovery**

<table>
<thead>
<tr>
<th></th>
<th>Post Low-Cloud</th>
<th>Any Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud-cover Instrument</td>
<td>0.129***</td>
<td>1.244***</td>
</tr>
<tr>
<td></td>
<td>(0.00924)</td>
<td>(0.474)</td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
</tr>
<tr>
<td>F-Stat</td>
<td>196.09</td>
<td></td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents instrumental variable estimates relating discovery and discovery-value to the indicator variable for whether a low-cloud image was obtained at the block-year level (Post Low-Cloud). The Cloud cover Instrument is defined as an interaction between a measure of avg. annual cloud cover at the block level (Avg. Cloud Cover) interacted with an indicator variable for whether the program is operational in the block’s continent. Block-year level observations. All estimates are from OLS models and include block and year fixed effects. The sample includes all block-years from 1950 to 1990 (9493 blocks for 41 years implies 389,213 block-year observations). See text and appendix for data and variable descriptions.
Table 5. Impact of Landsat on Gold Discovery for Different Types of Firms

<table>
<thead>
<tr>
<th></th>
<th>1(Junior)</th>
<th>1(Junior)</th>
<th>1(Senior)</th>
<th>1(Senior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Mapped</td>
<td>0.0288***</td>
<td></td>
<td>0.127***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00563)</td>
<td></td>
<td>(0.0285)</td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td>0.0472***</td>
<td></td>
<td>0.121***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00651)</td>
<td></td>
<td>(0.0260)</td>
<td></td>
</tr>
<tr>
<td>Percent Gain</td>
<td>355.68%</td>
<td>583%</td>
<td>182.39%</td>
<td>174.95%</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

*: p<0.15; *:* p<0.10; **:* p<0.05; ***:* p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: Block-year level observations. All estimates are from OLS models. The sample includes all block-years from 1950 to 1990 (9493 blocks for 41 years implies 389,213 block-year observations). Post Mapped: 0/1 =1 for a block-year after the first image has been received and Post Low-Cloud: 0/1 =1 for block-year after the first low-cloud image (lower than 30% cloud cover) has been received. 1(Junior): 0/1 =1 if a discovery is reported in a block-year by a junior mining firm and 1(Senior): 0/1 =1 if a discovery is reported in a block-year by a non-junior entity. See text and appendix for data and variable descriptions.

Table 6. Impact of Landsat on Gold Discovery by Ability of Local Institutions to Support Exploration

<table>
<thead>
<tr>
<th></th>
<th>Income</th>
<th>Inst. (Survey)</th>
<th>Inst. (Polity IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.0398</td>
<td>0.0116</td>
<td>0.0943***</td>
</tr>
<tr>
<td></td>
<td>(0.0288)</td>
<td>(0.0277)</td>
<td>(0.0329)</td>
</tr>
<tr>
<td>Post Low-Cloud X Above-Median</td>
<td>0.352***</td>
<td>0.437***</td>
<td>0.117***</td>
</tr>
<tr>
<td></td>
<td>(0.0540)</td>
<td>(0.0563)</td>
<td>(0.0420)</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

*: p<0.15; *:* p<0.10; **:* p<0.05; ***:* p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: Block-year level observations and OLS models. In each of the three specifications, I evaluate the impact of Landsat with regional variables that are correlated with the ability of local institutions to support exploration and experimentation. Above-median: 0/1=1 for blocks that are above the median in terms of rank on the institutional quality dimension under study. To qualify as “Above-Median”, In column 1, blocks must belong to high-income countries according to the World Bank classification of nations, in column 2, blocks must belong to countries in the top-half the “policy rank” distribution according to the Fraser Institute Mining Survey and in column 3, blocks must belong to countries with a positive Polity score before 1972 according to the Polity IV dataset.
Appendices (For Online Publication Only)

Note: This appendix has been provided here for reference only. The main manuscript is meant to be self-sufficient and the contents of this appendix only serve to add additional detail to the material presented.

Table of Contents

• Appendix A: Data Description
 – A1: Landsat Coverage Data
 – A2: MinEx Consulting Discovery Database
• Appendix B: Back-of-the-envelope Welfare Calculation
• Appendix C: Additional Figures and Tables
 – Figure C1: Blocks with Gold Discoveries
 – Figure C2: Testing the Validity of the Prospectivity Score Measure
 – Figure C3: Example of Variation in Landsat Coverage
 – Figure C4: A Heatmap of Average Cloud Cover
 – Tables C1: Robustness Checks – Different Cutoffs for Low Cloud Cover
 – Tables C2: Robustness Checks – Alternate Spatial Clustering
 – Tables C3: Robustness Checks – Negative Binomial Specification
 – Tables C4: Robustness Checks – Subsample analysis
 – Tables C5: Robustness Checks – Excluding Blocks Treated Early
 – Tables C6: Robustness Checks – Placebo Treatment Year
 – Tables C7: Cross-Sectional Specification: Are Delays Associated with Lower Rate of Discoveries?
 – Tables C8: Robustness Checks – Differential Time Trends by Region Types
 – Tables C9: Robustness Checks – Different Panel Lengths
 – Tables C10: Robustness Checks – Junior and Senior Discovery Accounting for Joint Ventures
Appendix A: Data description

This appendix describes in additional detail the data sets used in the analysis.

A1. Landsat Coverage Data

It is useful to review some technical details of the Landsat satellite program before understanding how the data on Landsat coverage are generated.

Landsat Program: The Landsat program is a forty year-old program to collect imagery of the earth’s surface. There have in total been seven successful Landsat satellite launches including Landsat 1, 2 and 3 which form the first generation of satellites launched in the 1972, 1975 and 1978 respectively. These first generation satellites had a similar technical design and are the focus of this paper. Each operated at an orbit of about 900 km above the earth’s surface, took images of “moderate resolution” covering an area of approximately 185km X 185km in each image. Each satellite orbited the earth once every 18 days, and consequently was designed to collect repeat images of the earth’s surface over this interval. Each satellite carried the “Multispectral Scanner System” (MSS sensor) that captured information in the spectral resolution of 0.5 – 1.1 μm ([Landsat Data Users Handbook](http://landsat.usgs.gov/)). Because images were taken using the MSS rather than a standard optical camera, different bands of information were captured including the visible IR and reflected near-IR portions of the spectrum, and all of this data was available for analysis. Note that Landsat-1 also contained another sensor, the “Return Beam Vidicon” (RBV) sensor, which proved to be a subsidiary sensor and provided very little data.\(^{20}\) I exclude the RBV sensor from the analysis and focus on the MSS only. The Landsat system operated under the “Worldwide Reference System” (WRS) that is a referencing system to identify different locations around the earth and their corresponding image in the Landsat system. By my calculations, about 15,000 of these Landsat image locations intersect land features on the earth, and these 15,000 185kmx185km “blocks” form the sample for my analysis.

Calculating Landsat Intensity by block: In 1973, The US Geological Survey (USGS) constructed a facility near Sioux Falls, South Dakota known as the Earth Resources Observation and Science (EROS) data center to archive and distribute Landsat imagery. This data center is the main repository of Landsat information for follow-on use. In order to quantify variation in the availability of imagery it is necessary to study these archives and arrive at estimates of Landsat holdings at a given point in time for a given block, a non-trivial exercise, given both the size of the data holdings and the difficulties in accessing the data. I rely on Goward et al. (2006), a study conducted at the behest of the Advisory Committee to the USGS National Satellite Land Remote Sensing Data Archive to produce estimates of Landsat historical holdings at different points in time. This study analyzed all available data at the EROS center and produced maps that visualized geographical variation in Landsat holdings on a yearly basis and also provided estimates of cloud cover for each block-year. These data are publicly available and I downloaded them from http://edcftp.cr.usgs.gov/pub/data/richness/ on Nov 13, 2014. Specifically I focus on the mss1 files available (from mss1972.tar.gz upto mss1983.tar.gz) as the raw maps used to calculate my Landsat intensity scores. Each of these files provides a shape file for the corresponding year, that show the number of images collected for each block as well as measures of cloud cover in 10% increments. Using these block-year level observations of intensity and cloud cover, I calculate overall measures of intensity and cloud cover.

Note that while the EROS center was the major repository of Landsat imagery charged with providing data

\(^{20}\)[see https://lta.cr.usgs.gov/rbv.html](https://lta.cr.usgs.gov/rbv.html).
without discrimination, globally and at a reasonable cost – it was not the only source of Landsat data. There were a few countries that collected local Landsat data through “International Cooperator” (IC) stations, and some US departments maintained their personal repository of Landsat data. For the purposes of this paper, I am unable to survey these data and rely on the estimates from Goward et al. (2006) for the analysis in this paper.

A2. MinEx Consulting Discovery Database

There exists no canonical database that tracks global mineral discoveries. In this paper I use a proprietary database developed by MinEx Consulting, Australia to track gold discoveries. These data have been compiled manually over many years by Mr. Richard Schodde of MinEx consulting. These data are based on information sourced from company annual reports, press releases, NR 43-101 disclosure documents under Canadian law, technical and trade journals (like Economic Geology, Northern Miner and Mining Journal), government files from various national geological surveys and personal communications with key people in the industry. These data were made available for the current research project under a non-disclosure agreement with MinEx consulting and are not available for redistribution given their commercial value.

Coverage: The data was compiled from MinEx’s master database which contains information on over 55,000 mineral deposits across a wide range of metals. A large number of these deposits are smaller than “Minor” – and as such are of limited commercial interest. It is unlikely that the database has 100% coverage, because a large number of deposits (especially of smaller sizes) are not reported systematically and many companies and countries do not provide full breakdowns of their current inventory. Notwithstanding these issues, according to MinEx estimates that “its database (including information on discovery date) for Gold and Base Metals captures at least 99% of all giant-sized deposits and 93% of the major deposits and 65% of the moderate deposits” across all minerals. Coverage for larger deposits for gold is estimated to be significantly better than this baseline estimate.

Additional Notes: It is important to note a few important aspects of these data. First, while I analyze “gold” deposits, deposits are often made up of more than one mineral. Gold for example, is often found along with Copper. I only include deposits where the “primary metal” has been identified as Gold according to the MinEx data. MinEx makes this evaluation based on the economic value of the different mineral deposits reported at a given location.

Second, the discovery year refers to when the deposit was recognized as having significant value. This is usually set as the date of the first economic drill intersection. It should be noted that a review of the discovery history of the deposit may show that there were small-scale workings on the site. For purposes of these data, if there is a order-of-magnitude step change in the known endowment of the deposit (i.e. from 100 koz to >1 Moz of Gold, the date of the upgrade is viewed as the discovery date for the main deposit.

Appendix B: Back-of-the-Envelope Welfare Calculation

It is quite difficult to calculate the exact contribution of the Landsat program to welfare. Such a calculation would involve the total general equilibrium impact of the program on a number of different margins including (a) additional private sector surplus, (b) additional consumer surplus for end users and (c) costs of the program. The qualitative literature on Landsat (Mack, 1990) has documented the large number of applications of Landsat information in a wide variety of different sectors including agriculture, land-use and urban planning, environmental and geological research, forestry, hydrology, transporation etc. Evaluating
the general welfare contributions of the program to all of these different sectors though desirable, is beyond
the scope of this calculation.

Instead, I will make a number of (perhaps restrictive) assumptions to arrive at one reasonable estimate for
the impact of the Landsat program. Specifically, I will focus on the value of the Landsat program to the
gold exploration industry between 1972 and 1990. This will help calculate one lower bound of the value
of the program. Further, I will assume that the discovery of the program has few general equilibrium im-
pacts, especially on gold price, which will be an important determinant of the overall profits to the industry.
Further, the increased availability of gold as a natural resource due to Landsat could have had implications
for consumers, especially because gold is a common material used in technological applications like elec-
tronics and computer chips— I will ignore these consumer effects and will focus instead on the value for
the firms. Finally, there are significant costs involved in gold discovery and exploration. For the purposes
of this analysis, I will focus on additional revenues from new gold discoveries and ignore additional costs,
mostly because of a lack of data on search costs in my setting.

With these caveats, a back-of-the-envelope calculation of the value of the Landsat program would proceed as
follows. My estimates from 3 suggest that in blocks that benefited from the availability of Landsat mapping
information, the probability of new discoveries rose by about 0.164 (column 4), or about 0.00164 additional
discoveries per block-year. This translates to about 0.0246 additional discoveries over a fifteen year period.
In my data, of all discoveries made between 1950 and 1990, the average discovery size is about 1.8 Moz,
and therefore each mapped is likely to discover about 0.04428 Moz of additional gold reserves due to the
Landsat program. From a block’s point of view, this translates to about $17.7 million USD assuming a gold
price of $400 per ounce (which was the price of gold in the 1980s). At the present rate of about $1300 per
ounce, this translates to additional deposits worth about $57.5 million USD. For a country the size of the US
(with about 3.8 million sq. miles) this translates to additional gold reserves worth about $6.4 billion USD
that can be attributed to the information from the Landsat program (at a gold price of $400 per ounce).

The cost of the Landsat program were relatively modest in comparison. The first generation of the Landsat
program was estimated to have cost about $125 million USD (Mack, 1990). Therefore, even discounting
the contributions of the Landsat program to numerous other sectors, the value of the Landsat program to the
gold exploration industry alone seems to have justified its costs. Even if exploration costs were estimated
to be about 50% of total value of reserves, this conclusion would not change significantly. It is quite clear
from such a back-of-the-envelope calculation that the Landsat program created enormous value for the gold
exploration industry.
Appendix C: Additional Figures and Tables

Figure C.1. **Blocks with Gold Discoveries**

Note: This map plots blocks that reported gold discoveries of significant size as reported by the MinEx data. The blocks are color coded by the first year that discovery was reported since 1958; red if this year was before 1973 and blue if it was after. Note that blocks can (and sometimes do) report discoveries in multiple years, in which case, they are color coded by the first year in which the discovery was reported.
Figure C.2. **Testing the Validity of the Prospectivity Score Measure**

Panel A: Earthquake Propensity and Gold Discovery

![Scatter plot of earthquake hazard index vs. gold discoveries.](image)

Panel B: Geological Research and Gold Discovery

![Scatter plot of total publications vs. gold discoveries.](image)

Note: This figure outlines binned scatterplots outlining the relationship between gold discovery and predictors of gold discovery used in the gold propensity score index. In Panel A, the variable on the x-axis is earthquake hazard index at the block level, while in the Panel B, the variable on the x-axis is the total number of publications for a given block. For both panels, the y-axis is the total number of discoveries between 1950 and 1990. For Panel A, blocks are grouped at values at equal intervals (rounded to the closest 0.2) and block-groups with over 0.4 average findings are omitted, while for Panel B, all blocks with more than 10 publications are normalized to have 10 publications. The fitted lines are weighted by bin size for both panels.
Figure C.3. **Example of Variation in Landsat Coverage**

(1) Block 25177, Chile
Year mapped (Post Mapped) = 1973
Year low-cloud map (Post Low-Cloud) = 1973
Outcome: Amax Gold Discovery reported in 1980

(2) Block 24988, Chile
Year mapped (Post Mapped) = 1975
Year low-cloud map (Post Low-Cloud) = 1976
Outcome: No discovery reported to date

Note: This figure provides an example that illustrates the research design and data used in the baseline specification using two Landsat blocks in Chile. Figure (1) on the left, shows the best available image for Block 25177 available from the Landsat project by 1983. This map arrived in 1973, relatively early, and happened to be cloud-free. In my data, this block reported a gold discovery by Amax gold in 1980. The best available image for Block 24988 is shown in Figure (2) on the right. This map, the first one for this block, arrived in 1975 (a delay of two years possibly caused due to technical errors in data collection) and happened to be significantly obscured with clouds (upto 39% according to my data) and received a relatively cloud-free map (not depicted above) only in 1976. According to my data, no discovery has been reported in this block by the year 1990.
Figure C.4. A Heatmap of Average Cloud Cover

Note: This map plots a heatmap that plots the distribution of the average cloud cover variable over Landsat blocks. Specifically, for each block, I calculate average cloud cover in the year 2005, based on information provided by the MODIS satellite data from NASA (MODIS Atmosphere Science Team, 2005) for each block. Blocks in white indicate an average cloud cover of 0-20% and the darkest blocks indicate a cloud cover of 80-100%, and the other three colors indicate the other three quintiles in between. This average cloud cover variable is then interacted with an indicator variable for Landsat operation in the block’s region which is the instrument that I employ in the IV specification. Please see text for more details.
Table C.1. **Robustness Checks – Different Cutoffs for Low Cloud Cover**

<table>
<thead>
<tr>
<th></th>
<th>10 pct.</th>
<th>20 pct.</th>
<th>40 pct.</th>
<th>50 pct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.156*** (0.0287)</td>
<td>0.148*** (0.0282)</td>
<td>0.180*** (0.0262)</td>
<td>0.165*** (0.0277)</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

+ p < 0.15; * p < 0.10; ** p < 0.05; *** p < 0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates that use different cutoff points to calculate an image with low cloud cover. In the main specification, any image below 30 percent cloud cover is considered a low cloud image. This table evaluates the baseline regression with a block considered to be mapped with a low cloud image if an image was obtained with cloud cover values below 10%, 20%, 40% or 50% in Columns 1-4 above.

Table C.2. **Robustness Checks – Alternate Spatial Clustering**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Mapped</td>
<td>0.152*** (0.0315)</td>
<td>0.152*** (0.0349)</td>
<td>0.152*** (0.0395)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td>0.164*** (0.0306)</td>
<td>0.164*** (0.0350)</td>
<td>0.164*** (0.0452)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Clust. Group</td>
<td>2x3</td>
<td>2x3</td>
<td>5x6</td>
<td>5x6</td>
<td>Country</td>
<td>Country</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td></td>
</tr>
</tbody>
</table>

+ p < 0.15; * p < 0.10; ** p < 0.05; *** p < 0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program similar to the specification in the baseline specification except with different assumptions for the clustering of standard errors. In all specifications, standard errors are clustered at “block groups”, which are sets of blocks larger than any given block. In columns (1) and (2), the size of a block group is 2x3 blocks (i.e. 6 blocks in any given block group), while in columns (3) and (4), the size of a block group is 5x6 (i.e. 30 blocks in any given block group). Standard errors are clustered at this large block-group level rather than at the block level. In columns (5) and (6), the standard errors reported are the ones obtained by clustering at the country-level.
<table>
<thead>
<tr>
<th></th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>isfind</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Mapped</td>
<td>2.640***</td>
<td></td>
<td>1.626**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.581)</td>
<td></td>
<td>(0.661)</td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td></td>
<td>1.526***</td>
<td></td>
<td>0.609*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.329)</td>
<td></td>
<td>(0.358)</td>
</tr>
<tr>
<td>Block FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>18860</td>
<td>18860</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Note: This table presents estimates for the Landsat program similar to the specification in the baseline specification, except the estimates are produced from negative-binomial regressions, rather than OLS models. Exponentiated versions of the above coefficients provide estimates of the treatment elasticities.

Note: Standard errors clustered at block-level shown in parentheses.
Table C.4. **Robustness Checks – Subsample analysis**

Panel A

<table>
<thead>
<tr>
<th></th>
<th>Excluding-USA</th>
<th>Excluding USA/CAN/AUS</th>
<th>Excluding USSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.141***</td>
<td>0.0929***</td>
<td>0.101**</td>
</tr>
<tr>
<td></td>
<td>(0.0270)</td>
<td>(0.0277)</td>
<td>(0.0421)</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>363998</td>
<td>291551</td>
<td>313445</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th>Excluding-Pre72</th>
<th>Excluding Unmapped</th>
<th>Only Tree-Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.157***</td>
<td>0.109***</td>
<td>0.0492</td>
</tr>
<tr>
<td></td>
<td>(0.0243)</td>
<td>(0.0323)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>383719</td>
<td>373592</td>
<td>80975</td>
</tr>
</tbody>
</table>

+: $p<0.15$; *: $p<0.10$; **: $p<0.05$; ***: $p<0.01$

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates from baseline DD specification for different subsamples of the data. Panel A presents estimated excluding certain countries. Specifically, the first column excludes blocks in the USA, the second excludes blocks in the US, Canada and Australia (the top gold producing countries in the world) and the third excludes blocks in the USSR, which could have been poorly mapped given that Cold War. Panel B presents estimates for some other subsamples of the data helping establish the robustness of the estimates. The first column excludes blocks where at least one discovery had occurred before the launch of the Landsat program, the second column excludes all the blocks that were not mapped by the first generation of the Landsat program (i.e. by 1983) and the final column includes only those blocks that have substantial tree-cover, and where Landsat should convey no geological information. Tree cover is coded using codes 1-4 from the GLC2000 dataset indicating all “broadleaved” trees.
Table C.5. **Robustness Checks – Excluding Blocks Treated Early**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Mapped</td>
<td>0.133***</td>
<td>0.0825+</td>
<td>0.0902*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0398)</td>
<td>(0.0507)</td>
<td>(0.0473)</td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td>0.115***</td>
<td>0.0902*</td>
<td>0.0902*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0339)</td>
<td>(0.0473)</td>
<td>(0.0473)</td>
<td></td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>137268</td>
<td>180851</td>
<td>50758</td>
<td>87494</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program by excluding blocks that were treated in the first year, or the first two years of the program. A majority of the blocks were treated in this period, so this analysis restricts attention only within blocks that experienced a delay of at least two years or more. Columns (1) and (3) exclude 64.7% (6145) and 86.7% (8255) blocks that were mapped within the first or first two years of the program, respectively while columns (2) and (4) exclude 53.5% (5082) and 77.5% (7359) blocks which were mapped with low-cloud maps within the first, or first two years of the program respectively.

Table C.6. **Robustness Checks – Placebo Treatment Year**

<table>
<thead>
<tr>
<th></th>
<th>Any Discovery</th>
<th>Any Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>-0.0521</td>
<td>-0.0362</td>
</tr>
<tr>
<td></td>
<td>(0.0424)</td>
<td>(0.0395)</td>
</tr>
<tr>
<td>Block FE</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program similar to the specification in the baseline specification except the “Year Low-Cloud” is replaced by a random integer between 1972 and 1988 for each block, effectively randomizing the treatment year at the block-level. The other variables are calculated as usual.
Table C.7. Cross-Sectional Specification:
Are Delays Associated with Lower Rate of Discoveries?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay (Years)</td>
<td>-0.231***</td>
<td>-0.144**</td>
<td>-0.148***</td>
<td>-0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.0206)</td>
<td>(0.0423)</td>
<td>(0.0479)</td>
<td>(0.0330)</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>None</td>
<td>Continent FE</td>
<td>Subregion FE</td>
<td>Block-Group FE</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.00370</td>
<td>0.0143</td>
<td>0.0168</td>
<td>0.0208</td>
</tr>
<tr>
<td>N</td>
<td>9493</td>
<td>9493</td>
<td>9493</td>
<td>9493</td>
</tr>
</tbody>
</table>

$+:p<0.15; \times:p<0.10; \times\times:p<0.05; \times\times\times:p<0.01$

Standard errors clustered at block-level shown in parentheses.

Note: This table presents an alternate cross-sectional specification to understand the impact between Landsat mapping delays and gold discovery. Specifically, I estimate an equation of the form $Y_i = \alpha + \beta_1 \times Delay_i + \gamma_i + \epsilon_i$, where Y_i the main outcome variable is an indicator for whether any discovery was made in a given block i after the launch of the Landsat program in 1972 till 1990. $Delay_i$ is the total difference between the year in which a block was mapped with a low cloud image and 1972, γ_i represents spatial fixed effects. In Column (2), I include six separate continent fixed effects (North America, South America, Asia, Africa, Europe and Oceania). In Column (3), I include 21 separate subregion fixed effects, where subregions include Central Asia, Northern Africa, Western Europe, Caribbean etc. In Column (4), I include separate “block-group” fixed effects where I divide all possible blocks into thirty-four large block-groups. Standard errors are clustered at the block level in all specifications. Standard errors are clustered at the same level as the fixed effects, except in Column (1) where robust standard errors are reported.

Table C.8. Robustness Checks – Differential Time Trends by Region Types

<table>
<thead>
<tr>
<th></th>
<th>Any Discovery</th>
<th>Any Discovery</th>
<th>Any Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.171***</td>
<td>0.0713***</td>
<td>0.0729**</td>
</tr>
<tr>
<td></td>
<td>(0.0260)</td>
<td>(0.0292)</td>
<td>(0.0307)</td>
</tr>
<tr>
<td>Block FE</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Income Grp. X Year</td>
<td>Continent X Year</td>
<td>Subregion X Year</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

$+:p<0.15; \times:p<0.10; \times\times:p<0.05; \times\times\times:p<0.01$

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program similar to the specification in the baseline specification, except instead of a common year fixed effect across regions, time fixed effects are estimated using region-specific time trends. Column (1) includes separate time trends for five different income groups interacted with year dummies, Column (2) includes time trends for six continents (Africa, Asia, Europe, North America, South America, Oceania) interacted with year dummies while Column (3) includes separate time trends for 21 separate subregions (for example, “south-eastern asia” or “western europe”) interacted with year dummies.
Table C.9. Robustness Checks – Different Panel Lengths

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Low-Cloud</td>
<td>0.163***</td>
<td>0.160***</td>
<td>0.161***</td>
<td>0.145***</td>
<td>0.131***</td>
<td>0.112***</td>
</tr>
<tr>
<td></td>
<td>(0.0274)</td>
<td>(0.0281)</td>
<td>(0.0278)</td>
<td>(0.0284)</td>
<td>(0.0288)</td>
<td>(0.0293)</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>370227</td>
<td>351241</td>
<td>332255</td>
<td>313269</td>
<td>294283</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program by differing length of the panel. In each of the columns data is only included for years 1950-90, 1951-89, 1952-88, 1953-87, 1954-86 and 1955-90 respectively.

Table C.10. Robustness Checks – Junior and Senior Discovery Accounting for Joint Ventures

<table>
<thead>
<tr>
<th></th>
<th>1(Junior)</th>
<th>1(Junior)</th>
<th>1(Senior)</th>
<th>1(Senior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Mapped</td>
<td>0.0227***</td>
<td>0.125***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00523)</td>
<td>(0.0283)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Low-Cloud</td>
<td></td>
<td>0.0351***</td>
<td></td>
<td>0.119***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00566)</td>
<td></td>
<td>(0.0259)</td>
</tr>
<tr>
<td>Percent Gain</td>
<td>294.64%</td>
<td>456.15%</td>
<td>182%</td>
<td>173.32%</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
<td>389213</td>
</tr>
</tbody>
</table>

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01

Standard errors clustered at block-level shown in parentheses.

Note: This table presents estimates for the Landsat program accounting for joint discoveries. In some cases, new discoveries are announced by more than one firm, often a junior and a senior. While the main specification codes firm type of the majority stakeholder in the project (either a junior or a senior), for this regression, all joint-ventures are assumed to be senior-led discoveries, while junior-led discoveries include only those projects where only one junior firm was involved in the discovery.