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The foundation of the scientific method rests on access to data,
and yet such access is often restricted or costly. We investigate
how improved data access shifts the quantity, quality, and diver-
sity of scientific research. We examine the impact of reductions
in cost and sharing restrictions for satellite imagery data from
NASA’s Landsat program (the longest record of remote-sensing
observations of the Earth) on academic science using a sam-
ple of about 24,000 Landsat publications by over 34,000 authors
matched to almost 3,000 unique study locations. Analyses show
that improved access had a substantial and positive effect on the
quantity and quality of Landsat-enabled science. Improved data
access also democratizes science by disproportionately helping
scientists from the developing world and lower-ranked institu-
tions to publish using Landsat data. This democratization in turn
increases the geographic and topical diversity of Landsat-enabled
research. Scientists who start using Landsat data after access
is improved tend to focus on previously understudied regions
close to their home location and introduce novel research top-
ics. These findings suggest that policies that improve access to
valuable scientific data may promote scientific progress, reduce
inequality among scientists, and increase the diversity of scientific
research.
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How does improving access to data affect the rate and direc-
tion of scientific progress? Data are the lifeblood of modern

empirical science and are used to both test and generate sci-
entific theory. Yet, access to scientific data is often costly and
difficult to obtain. Governments, private research institutions,
and key individuals control access to critical data in fields as
diverse as health (1), genomics and biology (2, 3), climate change
(4, 5), ecology (6), astronomy (7), economics (8, 9), and mete-
orology (10). Many government and research organizations
restrict access to their data and prevent data sharing, while others
charge significant fees for data access in order to monetize this
resource (11, 12). For example, the US government has recently
considered whether to substantially increase fees for two widely
used sources of remote-sensing imagery (13). Similar concerns
are being raised about privately owned data. For example, in
the ongoing crisis around COVID-19, commercial data on pop-
ulation mobility from cellphones is proving impactful (14), but
access to such data remains largely restricted. In this paper,
we study the effects of a steep decrease in the cost and shar-
ing restrictions of satellite images collected via NASA’s Landsat
program on scientific research. Our evidence demonstrates that
improving data access not only increases the quantity and qual-
ity of scientific research, it also democratizes and diversifies
science.

Despite the salience of data access for scientific progress,
research on the impact of limiting data access on the rate and
direction of scientific inquiry is limited. Prior work that has
looked at whether scientists who share their data are cited at
higher rates finds mixed results (15, 16) and has also documented
that data sharing among scientists is rare (17). Others have spec-
ulated that improved data access leads to “better science,” but
have not empirically examined this issue (18). In the context of

satellite imagery (our focus), past work has provided some evi-
dence that data costs affect the purchase of these data (19, 20)
and that data access impacts firms relying on those data (21, 22).
These studies, however, offer no insights on the effect of data
access on the rate and direction of scientific progress.

While not focused on data, past research has looked at
how scientific progress responds to improved access to other
research inputs, especially in the life sciences. For example,
intellectual property restrictions on genetic sequences decreased
follow-on research and the development of genetic tests (23).
Similarly, open access to biomaterials (24) increased their dif-
fusion in follow-on research. More recent work has qualified
these findings by showing that mere access might be insuffi-
cient to translate research inputs into publications; prior expe-
rience and resources could also be important (25). Whether
and to what extent these results translate to fields outside of
the life sciences and to the question of data access remains
unknown.

Further, prior research has largely focused on the impact of
improved access on overall levels of scientific output rather than
on scientific inequality. The question of whether and how dis-
advantaged groups of scientists or less studied scientific topics
benefit disproportionately as a result of improved data access
remains underexplored. Important exceptions include recent
work on the impact of open access to genetically engineered mice
on the diversity of follow-on research (26) and work that links
the impact of automation to the entry of outsiders in a field (27).
While insightful, this research does not look at how open access
may reduce inequality between scientists in environments that
vary in terms of resources. Moreover, this work does not directly
link the reduction in inequality to the diversification of science.

Significance

Data access is critical to empirical research, but past work on
open access is largely restricted to the life sciences and has
not directly analyzed the impact of data access restrictions.
We analyze the impact of improved data access on the quan-
tity, quality, and diversity of scientific research. We focus on
the effects of a shift in the accessibility of satellite imagery
data from Landsat, a NASA program that provides valu-
able remote-sensing data. Our results suggest that improved
access to scientific data can lead to a large increase in the
quantity and quality of scientific research. Further, better
data access disproportionately enables the entry of scientists
with fewer resources, and it promotes diversity of scientific
research.
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Overall, while “science of science” studies (28–30) suggest that
access to research inputs shape science, further examination of
the impact of improved data access on the quantity, quality, and
diversity of scientific research is warranted.

In this study, we examine two main questions. First, we eval-
uate whether improved data access increases both the quantity
and quality of science. Standard economic theory suggests that
quantity should increase as a result of a reduction in data access
restrictions. Better access should attract users with a lower will-
ingness to pay, thereby expanding the pool of scientists who may
exploit these data for scientific inquiry. With more researchers
in the field, competition should also increase, boosting research
quality (31). However, it is also possible that improved data
access is accompanied by reductions in marketing and training
efforts by the data provider, lowering awareness and reducing
publications (32, 33). Further, even if quantity increases, it is pos-
sible that new projects are initiated by lower-quality researchers
or on low-value projects, thereby lowering the quality of scientific
output. Given contradictory theoretical possibilities, our quanti-
tative examination sheds light on whether lowering data access
restrictions increases or decreases the quantity and quality of
science.

Our second question is whether improved data access democ-
ratizes science by enabling the entry of scientists with more
limited resources and whether it diversifies the topical focus of
scientific research. Inequality in scientific funding is substantial
(34–36), and monetary barriers to data access may exacerbate
these inequalities. Therefore, improving data access may democ-
ratize science by allowing researchers with smaller research
budgets (like those in lower-ranked universities or in the devel-
oping world) to enter the field and publish alongside better
endowed researchers. Further, under a nonlinear model of sci-
ence (37) where similar data can be used for a variety of different
applications, the entry of less endowed researchers may also
translate into a more diverse set of topics and research ques-
tions (38). The pursuit of research is partly a function of personal
interests and local context of the researcher which implies that
a more varied set of researchers is likely to pursue previously
unexplored research questions in previously underexplored areas
and research topics. In our context, for example, the entry of
a researcher from an underrepresented country (China) could
lead to an impactful publication that uses Landsat to research
an understudied place (Sichuan province) and an underexplored
topic (Oncomelania or freshwater snail-driven infectious disease
spread) (39). In our analyses, we therefore test whether and to
what extent data access democratizes and diversifies science.

Setting and Data
We focus on scientific applications of a government-provided
data source that experienced a dramatic shift in access restric-
tions. Specifically, we study NASA’s Landsat program which was
launched in 1972 and is the longest-running enterprise for acqui-
sition of satellite imagery of Earth. While Landsat images were
relatively affordable at first launch, the program was commercial-
ized, and access to imagery was substantially more expensive for
almost a decade between 1985 and 1995, before restrictions and
costs of data access were reduced again. The Landsat collection
of moderate-resolution images of Earth over time provides valu-
able data for researchers interested in studying environmental
and demographic change in a variety of fields, including geology,
forestry, agriculture, regional planning, and climate change. In
1985, the entire program along with all of its data was transferred
from the US government to a private agency. During this time,
costs of data access were relatively high as users were charged
$4,400 per image and data sharing was prohibited. However,
the high cost of data access was accompanied by a substantial
marketing enterprise that was responsible for popularizing and
commercializing the data.

In 1995, the program was transferred back to the US govern-
ment, and image prices dropped to $2,500 per image—a 43%
price reduction. Significantly, data sharing policies were relaxed,
allowing for free transfer of data between scientists, further
reducing costs of data access.∗ These changes meant that scien-
tists purchasing data were facing much lower costs and, perhaps
more importantly, could legally share data for free with other
scientists who did not yet have access. The Landsat program’s
preeminent role in environmental and climate science, combined
with the dramatic variation in the cost of access and sharing con-
straints, provides a unique opportunity to test how data access
restrictions affect both the rate of scientific progress as well as its
diversity.† In this paper, we will refer to the period between 1985
and 1995 as the commercial era and to the period after 1995 as
the open era.

Our data come from two main sources. The first is Landsat
coverage data from the start of the program which details when
and where images were taken, the number of images, and the
image quality of each of those images (based on percentage of
the image covered by clouds) along with a number of other tech-
nical details. Each image captures a fixed “block” on the surface
of the Earth, and the size of one block is roughly 115 miles in
length and 115 miles in width (around 13,200 square miles of
coverage).

The outcome variables in this study come from Scopus,
Elsevier’s “abstract and citation database of peer-reviewed
literature.”‡ The results of a search for “Landsat” (and some
related terms), up to 2005, yield a dataset of academic publica-
tions using or referencing Landsat from 1975 to 2005, composed
of roughly 24,000 publications by over 34,000 authors (see SI
Appendix for more details on our sampling strategy). Note that
this strategy is conservative—we are less likely to include research
using other types of satellite data, but might miss Landsat science
that refers to the data source as “satellite imagery” or uses other
generic terms.§ These publication titles, abstracts, and author
affiliations were geoparsed, where we first detected words that
represented place names (such as the “Columbia Glacier”) using
machine-learning entity-detection algorithms and then geocoded
these place names to obtain a latitude and longitude. This allows
us to match places studied in a paper as well as author loca-
tions to specific blocks on the surface of the Earth corresponding
to a Landsat image location. Our data also include information
on the publication itself (title, year, authors, publication source,
abstract, etc.) as well as other metrics available from Scopus such
as number of citations and journal quality measures. In a set of
additional analyses we compare trends in Landsat publications to
trends in non-Landsat publications, and we use the same strategy
to geoparse these non-Landsat publications.

The Landsat data are freely accessible, while the Scopus data
are only accessible with a subscription. We have created an Open
Science Framework repository that includes links to the freely
accessible data and query statements to extract the Scopus data.

*To put this shift in costs into perspective, the average study in our data focuses on three
geographical areas. Assuming that the study examines change, one would need at least
six images. In the commercial era, such a study would have cost at least $26,400, while
the price would drop to $15,000 after the program was transferred back to the US
government. Moreover, these costs could be lowered further as a result of data sharing
opportunities.

†Note that there were several changes to Landsat data distribution following the tran-
sition in 1995. Our main focus in this paper is on the changes following the 1992 Land
Remote Sensing Policy Act (which then affected the Landsat program in 1995), but we
do provide several estimates of the effect of other changes in SI Appendix.

‡See www.scopus.com.
§Note that there were no other sources of satellite imagery until the early 1990s, and
these less important alternate sources are not included in our sample, so they should
not bias our results.
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The repository also includes the code used to generate the results
(https://osf.io/mw34x/).

Results: Quantity and Quality of Science
We first present evidence that demonstrates the effect of the
transition of Landsat data from the commercial to the open
era. Fig. 1A shows the number of Landsat-related publications
over time. Fig. 1A shows that while the number of publica-
tions was growing rapidly in the period before commercialization
(pre-1985), this growth was halted in the commercial era. Once
Landsat data access improves after 1995, there is a strong and
immediate growth in the number of Landsat-related publica-
tions. As a comparison, the dotted line in Fig. 1A shows the
total number of publications classified by Scopus as being in the
“Earth and environmental science” category during this period.
For this broader set, we do not see a trend break around 1995,
suggesting that the patterns we document are not driven by con-
current changes in the scientific interest toward environmental
topics or the advent of the world wide web, an assertion we rig-
orously test and describe in the next section. Fig. 1 B and C show
how quality is impacted by the easing of access restrictions to
Landsat images. While the number of highly cited papers and
papers in top journals remained flat during the commercial era,
the start of the open era coincided with stark increases in both
the number of publications that garner over 100 citations and
those that are published in a top journal (defined as those in the
top 2% of journals by Scopus’ CiteScore metric).

This descriptive analysis, while striking, is insufficient to fully
establish the causal impact of access restrictions on science.
Therefore, we complement this analysis by formally estimating
the effect of the transition to the open Landsat era post-1995 in
a regression framework. We present an identification strategy
that effectively controls for a large number of alternative factors
that could explain the patterns we describe and helps identify the
causal role of data access restrictions in shaping scientific out-
put. We exploit the fact that Landsat coverage at the block level
was not uniform: technical errors and cloud cover in imagery
caused wide variation in the amount of data available at the
block level, even before Landsat data were commercialized. We
argue that potential research on blocks with a greater amount
of data should have been more affected by the privatization as
compared to blocks that had fewer high-quality images.¶ We
consider the distribution of high-quality images in 1985, and we
split the sample at the median into blocks with a higher level of
coverage (treatment group) and those with a lower level of cov-
erage (control group). In order for this comparison to be valid,
it is important to check that above-median Landsat coverage
areas are not likely to be those in which scientific exploration
is more likely to occur. Our research design addresses this con-
cern directly. Specifically, to control for any selection in terms
of which blocks get better coverage, we control for the aver-
age number of publications in any given block (via block fixed
effects) and examine whether treatment blocks have a greater
increase in publications as compared to control blocks follow-
ing the transition to the open era. If treatment blocks increase
their publications more than control blocks, we can conclude
that improved data access has a causal effect on scientific out-
put. This framework is based on past research that has validated
this approach (21).

Our estimates (SI Appendix, Table S1) from a difference-
in-differences model with block and year fixed effects suggest
that the number of published research articles at the block year
increased by a factor of 3 (mean 0.15) as a result of improv-

¶Although multiple number of images for the same block might seem redundant, typ-
ically, they are not. One feature that makes Landsat data valuable is the fact that it
allows scientists to study change, such as urbanization or deforestation.

ing access. Likewise, the number of highly cited publications
increased by a factor of 6 (mean 0.0019), while the probabil-
ity of any publication at the block year (mean 0.047) increased
by about 50%. Note that these estimates indicate the relative
increase in publications between treatment and control blocks
and not the total global increase as indicated in Fig. 1.

Our baseline specification, while relatively robust, is vulnerable
to two alternative explanations that could cloud the causal inter-
pretation of our findings. First, we classify blocks into treatment
and control groups based on the pre-1985 level of coverage. How-
ever, the Landsat project is constantly collecting new data, and if
treatment blocks started receiving more data post-1995 as com-
pared to control blocks, our estimates capture the effect of more
data and not necessarily the effects of reduced costs of access.
We collect information on the arrival of new images and show
that this explanation cannot explain our findings (SI Appendix,
Tables S8 and S9). Also, note that our research design relies
on the control sample having the capacity to produce new sci-
ence in the open era, an assumption that relies on a sufficient
number of images being available. Accordingly, we present esti-
mates limiting the control sample to only those blocks with five
or more images and by comparing control blocks with above-
median and above-90th percentile blocks in terms of image cover-
age pre-1985. These estimates (SI Appendix, Table S7) show that
both exercises produce findings similar to our baseline estimates.

Second, as shown in Fig. 1A, global publications are increas-
ing during the 1990s, especially in China and other countries
around the world with previously limited participation in science.
To make sure that our results are unaffected by these trends, we
first provide estimates excluding Chinese blocks and show that
our results are robust to their exclusion (SI Appendix, Table S6).
We then conducted another analysis to account for global trends
in publications. Rather than comparing Landsat publications
in treatment and control blocks, we compare Landsat publica-
tions to a sample of over 50,000 geoparsed publications in the
Earth and environmental sciences as identified through Scopus.
Specifically, we compare the evolution of Landsat and non-
Landsat publications at the block year level before and after
1995 (as shown in SI Appendix, Fig. S10). The regression esti-
mates (SI Appendix, Table S10) indicate that even when using
this completely different sample, Landsat publications increase
disproportionately as compared to Earth and environmental sci-
ences publications, indicating that our baseline results are not
contaminated by an overall increase in scientific focus on certain
blocks around the world.

Finally, in SI Appendix we included several additional analy-
ses to show the robustness of our results. For example, in SI
Appendix, Figs. S5 and S9 and Table S5, we show that it is unlikely
that the results from our main research design are driven by
unobserved differences in treatment and control blocks or by
the overrepresentation of blocks in the United States. We also
address the concern that our treatment effect is picking up on
changes in data access that succeeded the 1995 change. In SI
Appendix, Table S2, we show that while the 1995 change has a
significant effect, later changes (in 1999 and 2001) matter as well,
providing robustness for our main proposition that access costs
have a meaningful effect on science.

Results: Democratization of Author Base
Improved data access is unlikely to benefit scientists equally.
Specifically, scientists who are endowed with extensive financial
resources are less likely to benefit from a transition to open data
compared to less endowed scientists (35). Fig. 2A presents a
map showing the locations of authors who use Landsat data in
a scientific publication. A lighter, gray dot indicates locations
with at least one researcher publishing a paper in the period
from 1985 to 1995, i.e., when data access was costly and with
limited sharing restrictions. A dark, black dot indicates

23492 | www.pnas.org/cgi/doi/10.1073/pnas.2001682117 Nagaraj et al.
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Fig. 1. Landsat-related publications before, during, and after the Landsat commercialization era. This figure shows the number of Landsat publications
over time for three different types of publications. In all three panels, the bars in blue to the right of the vertical dashed line indicate publications after the
Landsat program was transferred back to the US government. (A) All publications, (B) publications with 100 or more cites as of 2017, and (C) all publications
in about 80 journals that represent the top two percentiles of journals ranked by citation score metrics. In A, the dashed line shows the general trend for all
earth and environmental science publications. In all three panels, note that trends in the number of publications are mostly steady during the commercial
era, after which there is a rapid increase in publications in the open data era.
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Fig. 2. How data access affects who participates in Landsat research. This figure explores the effects of lowering costs of data access on authors’ locations.
(A) A map where each light gray dot represents the presence of at least one author institution that has published a paper using Landsat data before data
access costs were reduced. The dots in black represent locations where an author institution published a paper using Landsat data only after data access
costs were reduced. A graph depicting this change is found in SI Appendix, Fig. S6. (B) Total number of Landsat publications separated by institutional rank
(top 50 vs. 50 to 200) as per the Quacquarelli Symonds (QS) World top university rankings. (C) Total number of publications separated by the authors’ country
income categories. For publications with authors from different country income groups, we sort the publication based on the minimum country income
group. Overall, the data suggest that lowering costs of data access was particularly helpful for authors in lower-ranked institutions and in non–high-income
countries.

locations with researchers who started publishing Landsat
research only after data access restrictions were reduced. The
locations with black dots therefore represent new author loca-
tions, potentially enabled by the reduced cost of access to Land-
sat data after 1995. This map shows that while many authors
in the United States and Western Europe were already lever-
aging Landsat data when access restrictions were high, many
researchers from regions such as South America, Africa, Eastern
Europe, the Middle East, and China started exploiting Land-
sat information only when access restrictions were reduced. A
graphical depiction of this change is in SI Appendix, Fig. S6.

This pattern, where the proportion of authors from less devel-
oped regions and scientific institutions with lower endowments
benefit from lowering the costs of data access, can be clearly
seen in Fig. 2 B and C. Fig. 2B charts the number of publi-
cations from authors in top 50# ranked institutions (in gray)

#We classified every publication as belonging to a top 50 institution if at least one author
was affiliated with an institution in the top 50 universities in the world according to QS
World university rankings.

as compared to those from institutions ranked 50 to 200 (in
blue), while Fig. 2C shows the number of publications by income
level of the authors’ country. As is clear from Fig. 2 B and C,
growth in number of publications is mostly driven by scientists
in contexts with fewer resources. In SI Appendix, Table S3, we
quantitatively examine the differential impact of lowering data
access restrictions for authors in lower-ranked institutions and
those from lower-income regions. Overall, these estimates sug-
gest a statistically significant difference between the increase in
total publications for authors from lower-ranked institutions and
lower-income countries.

Results: Diversity of Scientific Focus
Having shown that the open era democratized Landsat research
by allowing the entry of new authors, we now turn to examining
the question of whether this change also resulted in increased
diversity in scientific focus. Since the types of research ques-
tions studied by scientists are likely to be influenced by their
local contexts, democratizing who participates in science might
diversify science itself. We consider two approaches to measuring
this diversity: the geographic focus of the study and the research

23494 | www.pnas.org/cgi/doi/10.1073/pnas.2001682117 Nagaraj et al.
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topic as captured by the words used in the abstract of a paper
(37). Specifically, we explore whether improved data access facil-
itated research on previously unexplored 1) study locations and
2) topics as indicated by words used in abstracts.

Geographic Focus. We first examine the impact of improved data
access on the geographic focus of the research. Analogous to
the map we presented for authors, Fig. 3A presents a map that
demonstrates the change in the locations examined using Land-
sat data. The dots in gray represent locations that had already
been studied by 1995, while the dots in black represent new
locations that were studied for the first time after data access
had improved. The map shows that after data access improved,
new study locations emerged mainly in middle- and low-income
regions of the world. To show this pattern more directly, Fig. 3B
plots the cumulative number of unique study locations in the
United States, in other high-income countries, and in the rest
of the world. As is clear from Fig. 3B, improving data access
is associated with an increase in study locations, especially in
lower-income countries. Simple regression versions of Fig. 3B
described in SI Appendix, Table S4, confirm that these differ-
ences are statistically significant.‖ SI Appendix, Fig. S7, explores
these patterns further and shows the increase in the number
of unique study locations in a given year and the number of
first-time locations by country income.

We have shown that improved data access led to the entry of
new scientists as well as a focus on new study locations, but it
is not clear whether the two patterns are related. We therefore
conducted additional analyses. First, we split the sample of pub-
lications in the open era into those with at least one author who
had used Landsat data during the commercial era (incumbents)
and those without any authors who had previously used the data
(newcomers). We then calculate whether new study locations
were introduced mostly in newcomer or incumbent publications.
We find that newcomer publications introduce 3,982 new study
locations, while incumbents introduce 1,965 new locations. The
difference is partly driven by publication volume, but even if one
adjusts for this difference, newcomer publications are 15% more
likely to introduce a new study location.

Since new locations may have been studied by incumbent
authors in the absence of newcomers, our next analysis aims to
provide an estimate of how much incumbent authors would have
to expand their horizon to cover the new study locations intro-
duced during the open era. To calculate this estimate, we assign
incumbents to new study locations, measure their distance from
these study locations, and then compare this counterfactual dis-
tribution of distances to the realized distribution of distances
between the actual authors (i.e., newcomers) and the new study
locations.∗∗ Fig. 3C shows the distribution of actual and counter-
factual distances between authors and first-time study locations
in the open era for non-US study locations. As is clear from this
chart, the observed distances between authors and study loca-
tions are significantly lower than the counterfactual distances. In
fact, the average observed distance is 3,196 km, while the aver-
age counterfactual distance is 5,799 km (t = 9.2963), a difference
of over 2,500 km. These patterns hold when considering study
locations within the United States, but the differences are less
pronounced. In SI Appendix, we present more details on this anal-
ysis as well the full distribution of distances that includes both
US and non-US study locations. Overall, this result suggests that

‖Note that these estimates do not adopt the quasi-experimental research design like in
Fig. 1 and represent descriptive (rather than causal) estimates of the impact of data
access restrictions on diversity.

**The method we used to assign incumbents to new study locations is detailed in SI
Appendix.

newly entering scientists played a prominent role in expanding
the geographic focus of Landsat research in the open era.

Topical Focus. While it is clear from Fig. 3 that the democra-
tization of the author base diversified the geographic focus of
Landsat science, we also investigate the extent to which the top-
ical focus in the literature expanded. If new scientists are more
likely to be from different parts of the world and have a variety
of different research interests, it is possible that they use Land-
sat data to examine previously unexplored topics. To reprise the
example we used before, a Chinese researcher using Landsat is
not only more likely to study a region in China, he or she is also
more likely to use it to focus on questions of relevance to the
local context: infectious disease spread from a local freshwater
snail (39). Western scientists in the past might have ignored this
topic.

Our analysis is based on the text in the abstracts of publi-
cations using Landsat data. We first preprocessed the data by
removing stop words, punctuation, and other textual informa-
tion in the abstract field that is not part of the abstract (e.g.,
publisher information). We then tokenized the abstract by iden-
tifying the unique words used in those abstracts. These words
serve as indicators of its topical focus and will form the basis
of our textual analysis. Fig. 4A plots the introduction of these
novel words in our data by calendar year. The graph shows that
while the introduction of novel words was decreasing when data
sharing restrictions were in place, there is a large increase in the
number of unique words in the literature after 1995. This trend
is suggestive evidence of an expansion in scientific focus toward
a more diverse set of topics and fields.

Next we examine the contribution of newcomer scientists to this
growth in the diversity of topics post-1995. We leverage the set of
incumbent and newcomer authors and examine whether there are
differences in the topics studied by both groups. As a first step,
we simply compared words exclusively used by newcomers and
words exclusively used by incumbents in the open era. We find
that newcomers used 26,632 words that had not yet been used in
the commercial era, while incumbents used 13,348 novel words.
This gap is partly driven by the larger number of newcomer pub-
lications, but even when we consider the average number of new
words per publication, newcomers use 38% more novel words per
paper than incumbents (2.49 versus 1.73 per publication).

While the data do suggest that newcomers introduce more
novel words than incumbent scientists, it is not obvious that these
words represent meaningful new research topics. To address this
concern, we measure the semantic relationships between newly
introduced words and examine the internal consistency of those
words. We use word embedding models (40) to examine the vec-
tors of words introduced by newcomers and incumbents. Word
embeddings are locations in a multidimensional space that can
be used to measure symantic relationships between words. For
each word, we identified the five words†† closest in embedding
space and computed the average distance between them. For
example, if we observe the term “tree”, our method classifies it
as being more related in word-embedding space to “forest” than
another word like “glacier.” The computed average distance is
a measure of how related a newly introduced word is to other
newly introduced words. We log-transformed this measure to
produce a relatedness index, where a larger number represents
a word that is more internally consistent and is more likely to be
part of a broader topical discussion. We plot the distribution of
this index separately for the vector of new words introduced by
newcomers and incumbents in Fig. 4B. The graph clearly shows
that the distribution of words introduced by newcomers is shifted

††Results are robust to different cutoffs: 10, 20, and 50 words.
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A

B C

Fig. 3. How data access affects study locations. This figure explores the effects of lowering costs of data access on study locations. (A) A map where each
light gray dot represents at least one Landsat publication that studies the region before data access costs were reduced. The dots in black represent at
least one Landsat publication that studies the region only after data access costs were reduced. (B) Total number of unique locations studied by Landsat
publications separated by country income groups. (C) The distribution of distances between authors and study locations for all study locations that had not
been explored in the commercial era and are located outside the United States. A version of C that includes US locations is in SI Appendix, Fig. S8. Overall,
these findings suggest that easing data access restrictions particularly helped increase the number and range of study locations.

to the right. Therefore, newcomers not only introduce more new
words to the literature, but these words are also more internally
consistent, suggesting that they may capture a new topic or sets of
topics. One example of the set of internally consistent terms that
are introduced by newcomers includes Oncomelania (the genus
of freshwater snail discussed before) along with related terms
such as infection, transmission, snail, and schistosomiasis (a type
of infectious disease).

Finally, if new authors introduce new topics, we should also
expect them to publish their work in a wider set of academic
journals. Compared to the set of 982 unique journals in the com-
mercial era, there were 486 new journals that published work by
incumbent authors and 1,275 new journals that published work
by the new authors in open era.‡‡

Overall, the results from Figs. 3 and 4 are clear: not only did
the opening of Landsat data lead to the entry of a more diverse
author base, but these newcomers also diversified the scientific
discourse itself.

‡‡Journal field in our Scopus publications data includes various document types (journal
articles, books, conference proceedings, and editorials). We did not restrict to only
journals and treated different years of a conference as a different unique journal.

Conclusion
This study examines the role of data access on science. When
data access barriers are relaxed, it is much more likely to be
exploited by scientists, leading to a greater quantity and qual-
ity of scientific output. Further, ease of data access democratizes
science by allowing authors with fewer financial resources to par-
ticipate in the scientific process. This process of democratization
also increases the diversity of scientific research itself.

Our results come from a comparison of high- and low-
coverage areas for a single dataset in the area of Earth and
environmental science research. Future work could general-
ize these findings by comparing across multiple datasets and
research fields with varying levels of data access costs. Despite
our results coming from a single case study, we believe that
they may generalize and be relevant to other fields where
data access is important. As stated in the introduction, the
question of data access is central to virtually every scientific
field that relies on empirical measurement. In each of these
fields, the scientific labor force is divided into a few elites,
who have access to resources and are able to leverage them to
access data, while others must rely on poorer quality data or
engage in primary data collection. As scientific norms change
with many journals now requiring researchers to make their

23496 | www.pnas.org/cgi/doi/10.1073/pnas.2001682117 Nagaraj et al.
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Fig. 4. Topical diversity in Landsat science. (A) The total number of first-time abstract words used in Landsat publications. (B) The distribution of the
relatedness index by incumbent (dark) versus newcomer (light) authors. The higher the value of the index, the more related a focal word is to other newly
introduced words. The distribution of newcomer words is clearly shifted to the right, which implies that new words introduced by newcomers are more
likely to be related to other words introduced by newcomers (compared to new words introduced by incumbents).

data available and many funding agencies (in particular, NIH
and NSF) requiring data from funded projects be made avail-
able, many fields are seeing an abundance of data being made
available to a wider set of researchers. Our research suggests
that not only will such improvements in data access affect
the distribution of scientific credit across a wider and more
diverse pool of researchers, they could also shift the topical
focus of scientific research toward a broader set of research
questions.

Ultimately, data are the life blood of scientific research. While
recouping the cost of data generation and maintenance might
sometimes be necessary, our research suggests that policies to

restrict access to important data sources should consider the
costs of such measures on the quantity, quality, and diversity of
science before they are implemented.

Data Availability. All data and code required to generate the results are
publicly accessible and have been deposited in the Open Science Framework
(https://osf.io/mw34x/).
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Appendix: Landsat Background

Landsat History and Applications

The first Landsat satellite launched in 1972 and since then, Landsat has grown to become the longest
continuously running program for the collection of satellite imagery of the earth’s surface. In 2011, the
United Nations Educational, Scientific and Cultural Organization added the Landsat data archive to its
Memory of the World Register, “a record of international documentary collections selected on the basis
of world significance and outstanding universal value” ((1), p.xviii). As the world’s population has dou-
bled in the last fifty years, the Landsat program helps to “tell the tale, not only significant human im-
pacts, but also of the effects wrought by natural processes” ((1), p.xix). The Landsat program consists
of a series of satellites providing remote sensing imagery, and has had various funders, owners, and op-
erators over its history. It is currently managed by the US Geological Survey (USGS) and the National
Aeronautics and Space Administration (NASA). Other organizations that have controlled Landsat for a
period of time include the National Oceanic and Atmospheric Administration (NOAA), a private com-
pany called Earth Observation Satellite Company (EOSAT, now Space Imaging) and the Department of
Defense (DOD).

Landsat satellites orbit the Earth capturing images along a defined coordinate system. The Landsat
World Reference System (WRS) Path and Row ID (henceforth referenced as PID) identifies one scene.
The size of one scene is roughly 115 miles in length and 115 miles in width (around 13,200 square
miles of coverage). In any given year, the active Landsat satellite may have captured many images of
one scene, or not very many, or any. These images of a given PID scene may also contain high cloud
cover, obscuring the details of the land or coast below. Images with high cloud cover are of little use
to researchers requesting Landsat images. Figure S.1 provides a close-up view of Landsat scenes in the
western United States.

Figure S.1: Close Up Look at PIDs

Landsat images have a wide variety of applications for scientific research. The research questions stud-
ied using Landsat cover a variety of topics like glacier retreat, urban expansion, population movements,
deforestation, mining impacts (i.e. tar sands development, mountaintop removal), hydropower plant im-
pacts, desert irrigation, agriculture expansion, shrinking of bodies of water (i.e. Aral Sea, Lake Urmia),
fires (i.e. oil fires, forest fires), volcanic eruptions, hurricane flooding and other land use change studies
((1), p.xviii). Figure S.2 provides a few examples of the myriad different ways in which Landsat data
have been applied.

1



Figure S.2: Examples of the use of Landsat Data for Detecting Environmental Change

1. Deforestation in the Amazon Rainforest –
Rondonia, Brazil in 1975 (left) & 2012 (right)a

ahttps://landsat.visibleearth.nasa.gov/view.php?id=78596

2. Glacier Melt in the Indian Ocean –
Kerguelen Is. in 2001 (left) & 2017 (right)a

ahttps://landsat.visibleearth.nasa.gov/view.php?id=92059

3. Urbanization in India – New Delhi
in 1989 (top) & 2018 (bottom)a

ahttps://landsat.visibleearth.nasa.gov/view.php?id=92813

4. Flooding of the Mississippi River – St. Louis,
Missouri in 1991 (top) & 1993 (bottom)a

ahttps://landsat.visibleearth.nasa.gov/view.php?id=5422
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Commercialization Data Costs & Impact on Landsat Sales

The history of the Landsat program can be divided into three eras (2). The first began with NASA’s
initial development of Landsat in 1972 and continued through 1983. Satellites launched in this era,
Landsat-1, -2, and -3 were largely similar, collecting multispectral data at a medium resolution of 30m.
The second era (1982-1992) consisted of Landsat-4 and Landsat-5, launched in 1982 and 1984, respec-
tively. These satellites included an additional Thematic Mapper (TM) sensor that gathered seven bands
of data (as opposed to four in the previous sensors) and were particularly helpful for environmental
monitoring and studying climate change. The key event in this phase, the Land Remote Sensing Com-
mercialization Act of 1984, prompted the transition of operations and sales of Landsat images from the
government to a private entity, EOSAT in 1985. The third era of Landsat began with the Land Remote
Sensing Policy Act of 1992 which repealed the commercialization and started the process of moving
all Landsat operations back under full control by the federal government. In particular, the Policy Act
of 1992 mandated that the data policy for the pre-existing Landsat images should be renegotiated with
EOSAT, before eventually transferring the management of pre-existing and new data to the government.
It is this transition from the commercial second phase of the program to the open, third phase that is
the focus of our paper.1

Of particular interest to our study is the cost of access of Landsat data under the second and third eras.
The main problem with EOSAT’s reign over Landsat was the cost. EOSAT served a wide variety of en-
tities including commercial mining and oil exploration firms, the government as well as academics and
researchers. Before EOSAT took over, Landsat photo products were around $10-$70 and the “computer-
compatible tapes of the digital MSS data” cost $300 ((1), p.176). Under commercialization, these prices
increased considerably. For example, in November 1991, the price of Landsat Thematic Mapper (TM)
scenes increased to about $4,400 per scene. To put this in context, the cost to purchase one complete
set of TM data covering the coterminus U.S. went from about $250,000 in 1982 to over $1.9 million
in 1991 ((1), p.240). Further, EOSAT’s restrictive policy did not allow data sharing. This was espe-
cially problematic for researchers who were interested in sharing data with collaborators and with the
wider scientific community for replication and peer review. Anecdotal evidence supports the idea that
these policies were particularly harmful for academic science. According to the Landsat Legacy Project
Team: “From 1982-1990 the NASA Earth science program supported little Landsat-related research.
There is no question that the expense of Landsat data severely impacted Landsat-based Earth science
studies... Complaints about Landsat prices from the research community were not frivolous. Landsat
data costs drained research budgets” ((1), p.202).

This situation began to change with the Policy Act of 1992. This wide-ranging piece of policy reshaped
the future of the Landsat program extensively and mandated a dramatic lowering in the costs of data ac-
cess. In practice, the implications of the Policy Act unfolder over the following decade and the specifics
depended on the source of the underlying data (Landsat 4/5 vs. Landsat 7) and on the type of users in
question. Since we are interested in the implications of this change for science, we focus on the im-
plications of the law for academic, non-commercial users. For these users, this law established that,
with some restrictions, unenhanced data from Landsat should be made available at the “cost of fulfilling
user requests” (COFUR) and that this cost would exclude the fixed costs of designing, launching and
maintaining the satellite system itself (3). Further, this Act constituted an independent entity, Landsat
Program Management (LPM) that was tasked with implementing this goal and renegotiating access to
Landsat data, especially for government, academic and non-commercial uses. This revised agreement

1Landsat-6 was planned but ultimately failed following an unsuccessful launch. Two more missions Landsat-7 and Landsat-8
were launched more recently (1999 and 2013).
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between LPM and EOSAT on cost, processing and distribution rights for data was initialed in April,
1994 (4). Under this agreement, it was mandated that Landsat data be made available to educational in-
stitutions and non-profit organizations at reduced prices and with dramatically lower restrictions on data
sharing. For example, this agreement mandated that the cost of scenes purchased after December 31,
1994 would go down to $2,500 (a reduction of 43%). Equally important, restrictions on data sharing
and reuse were also lifted. For all data purchased in 1995 and beyond, could be shared without restric-
tions for non-commercial, academic and research uses ((4), p. 742). We therefore consider 1995 to be
the year when data was available to researchers and academic institutions at reduced costs and with far
fewer restrictions than before, and evaluate the effects of this change on academic science.

Appendix: Data Sources & Construction

To evaluate the impact of data costs on the quantity, quality, and diversity of scientific research, we
need data on the data source in question (Landsat images), a measure of scientific research (academic
publications), and indicators of research diversity.

Landsat Data

We obtained Landsat coverage data from 1972-2013 from the United States Geological Survey (USGS)
Earth Resources Observation and Science (EROS) data center metadata files. These data provide a list
of all images collected by the Landsat program, including their location in the Landsat reference sys-
tem, the image quality (based on percentage of the image covered by clouds), the specific Landsat satel-
lite (Landsat 1-5), and types of imaging used to capture the scene (MSS or TM), and the center lati-
tude and center longitude of the image. Each image captures a fixed "block" on the surface of the earth
and the size of one block is roughly 115 miles in length and 115 miles in width (around 13,200 square
miles of coverage).2 Many of these blocks do not cover the Earth’s landmass. Therefore, to narrow the
scope of Landsat images we consider relevant to our analyses, we created a risk-set of Landsat blocks
by considering those blocks that intersected with land or ice mass, plus a buffer zone of blocks that bor-
der these masses. In total, this procedure leaves us with 12,577 blocks which we consider relevant for
our analysis. This set is shown in Figure S.3.

2Because the different Landsat satellites use a different coordinate system (Landsats 1 through 3 use World Reference System
1 (WRS1), Landsats 4 and 5 use WRS2), we translate WRS2 blocks to WRS1 blocks in the Landsat data. To do this, in QGIS we
intersect WRS2 block centroids with WRS1 block polygons to create a translation set.
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Figure S.3: Risk Set of PIDs (with World Map embedded below for comparison)

Compiling the risk-set of blocks allows us to characterize the availability of data for scientists to use for
follow-on research and metadata allows us to identify considerable variation in the number and qual-
ity of images for each Landsat block. One useful way to measure this variation is by counting the total
number of scenes available for a given block before Landsat is commercialized. The higher the num-
ber of images, the more affected a block should be by commercialization, since the value of blocks with
few images is limited to begin with. We use this variation to characterize the impact of commercial-
ization on science. In particular, we classify blocks into one of two groups depending on whether they
were above or below the median (i.e. 18 images taken before commercialization) in terms of the num-
ber of images in 1985. We then analyze the differential impact of changes in the cost of Landsat data
on research across these two sets of blocks. Figure S.4 provides a map showing the blocks with above-
median number of images (blue) as compared to those with below-median coverage (yellow).

Figure S.4: Map of PIDs Separating Blocks With Above or Below Median Number (18) of Landsat Images
by 1985

Landsat data was largely collected by the central Earth Resources Observation and Science (Center), but
some data was also sent to international ground stations at various locations around the world. In the-
ory, scientists could access data from either the EROS center or one of the ground stations. While the
data from the international ground stations has been now centralized at the EROS center (5), it is pos-
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sible that we are missing information on the type of data collected at the international ground stations
in the metadata files we analyzed. We were not able to identify to what extent our data fail to capture
international ground station collection efforts, which is a potential limitation of our analysis.

Scopus Data

The measures to capture scientific research come from SCOPUS, Elsevier’s “abstract and citation database
of peer-reviewed literature.”3 The results of a search for “Landsat” (and some related terms) in All
Fields, up to 2005 (executed in 2017), yielded a data set of academic publications using or referencing
Landsat from 1974 to 2005, comprised of roughly 24,000 publications by over 34,000 authors. These
publication titles, abstracts, and author affiliations were geoparsed, i.e. we first detected words that rep-
resented place names (using machine learning entity-detection algorithms), and then geocoded these
place names to obtain a latitude and longitude for these places. This allows us to match places stud-
ied in a paper as well as author addresses to specific blocks on the surface of the earth corresponding
to a Landsat imaging location. For example, consider publication “A mini-surge on the Ryder Glacier,
Greenland, observed by satellite radar interferometry” which was published in the journal Science in
October 1996 (6). Our algorithm parses through the title and abstract of this publication and extracts
the fact that it is using Landsat data to study Greenland, which corresponds with a particular block of
Landsat imagery. We use a similar procedure to match the author affiliation locations to Landsat blocks.
For example, the authors of this study are based in Pasadena, CA (at the Jet Propulsion Lab) and Col-
lege Park, MD (and the University of Maryland), and we match this publication to the corresponding
Landsat blocks. In addition to this procedure that matches publications and authors with specific lo-
cations, our publication data set also includes information on the publication itself (title, year, authors,
publication source, abstract, keywords, etc.) as well other metrics available from SCOPUS such as num-
ber of citations and journal quality measures. In particular, journal quality metrics from SCOPUS in-
clude SCOPUS’ CiteScore, CiteScore percentile, Source Normalized Impact per Paper (SNIP), and
Scimago Journal and Country Ran (SJR).

Measuring Democratization and Diversity

In addition to the data on Landsat image coverage and Landsat-related academic publications, we also
need to incorporate variables that can capture democratization and diversity of scientific research. To
construct these measures, we focus both on authors and on research topics. For authors, we measure
the economic status of the author’s country of residence (e.g U.S., High Income, or Rest of the World)
as well as the rank of their academic institution according to the QS World top university ranking. We
consider academic research to be more inclusive if it is produced by authors from countries with GDP
per capita less than $30,000/year or if it is produced by authors affiliated with lower ranked academic
institutions. We choose the $30,000 cutoff since this represents the mean income among the blocks
with at least one study in our sample. Our country income tiers are coded based on World Bank data
which matches the country to its GDP per capita for both the year of the publication and for 2016. Di-
versity in topic space is measured by matching the geographic focus of a study to the country’s income
tier (U.S., High Income, or Rest of the World). We consider academic research to be more diverse in
topic space if it focuses on a wide range of new geographic locations. For both the author and publi-
cation diversity measures, a country is categorized as high-income if its GDP per capita is greater than
$30,000/year.

3See www.scopus.com.
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Summary Statistics

As mentioned before, we have 12,577 unique blocks over which we track Landsat coverage and publica-
tions. Of these blocks, 5.72% are in the U.S. (719 blocks), 39.56% are in other high-income countries
(4,975 blocks), and 54.73% are in the rest of the world (6,883 blocks).

In total, we consider all publications between 1975-2005 that refer to Landsat in our analysis, which
leaves 23,939 publications in our sample. Of these publications, 1,396 are cited more than a 100 times
by 2016, and we classify these publications as “highly cited” (5.8%). Further, of all the publications,
1,937 (8.1%) were published in a top journal, i.e. those published in the top 2 percentile of journals
by SCOPUS’ CiteScore. We use these measures to visually evaluate the effect of data access on pub-
lication output and quality. Further, in our regression analysis, we use a sample of 10,292 blocks that
received at least one image by 1985. Within this sample, the median block receives 18 images by 1985,
although this number varies between 1 and 302.

When it comes to authors, the publications in our sample were written by a total of 34,323 authors and
on average, a publication has 2.8 authors (minimum author count is zero, maximum author count is 56).
Further, our geoparsing algorithm detects over a total of 85,879 locations associated with authors (9,205
before 1985, 18,193 in the commercial era, 58,481 in the open era). Further, we match each of these
locations to blocks, and find that as of 2005, about 1,656 blocks had at least one participating Landsat
author. Of these blocks, 359 are in the U.S., 391 are in other high-income countries, and 935 in the
rest of the world. Further, of the 23,939 publications in our sample, 5% of the publications included an
author from a Top 50 Institution (1,195) and 8.8% included an author from the Top 51-200 Institutions
(2,109).

Finally, when we look at the topics under study, i.e. the locations of the study detected from our geop-
arsing exercise, we find a total of 48,264 location names studied in the Landsat literature between 1975-
2005. These locations match to 2,994 unique Landsat blocks that have been studied during this time. In
other words, about 23% of the blocks on land have at least one paper about them by 2005. About 468
of these blocks are in the US, 664 in other High Income countries, and the rest of the world has about
1906 blocks. Further, on average, a paper has 2.9 studied locations. In Era 2, this average is 2.6 and in
Era 3, each publication has an average of 3.2 studied locations.

Appendix: Regression Estimates & Supplementary Figures

Effect of Data Access on Quantity and Quality

We now turn to describing the main regressions we use to supplement the figures in the main article
and provide estimates of the impact of reducing data access restrictions on scientific output. Our first
set of specifications estimates the effect of reducing data access restrictions on academic science by
comparing the number of publications in blocks with above-median level of Landsat coverage to blocks
with below-median coverage as described in Figure S.4. We use Ordinary Least Squares (OLS) to esti-
mate the following regression specification using a balanced panel at the block-year level:

.8C = U + V1 × �1>E4 − "4380=8 × %>BC − 95C + W8 + XC + n8C

where %>BC − 95C equals one for all years after 1995 and �1>E4 − "4380=8 equals one for all blocks
with above-median level of data as defined before and W8 and XC represent block and time fixed effects
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respectively for block 8 and year C. These block-level fixed effects help to control for any stable cross-
sectional differences between above-median and below-median blocks in a flexible way. Therefore, even
though above-median and below-median blocks are not randomly distributed across the world, our esti-
mates are able to control for the fact that some regions will always have more scientific interest – and
thus more publications – irrespective of the cost of data access. Similarly, we also control for year fixed
effects which help to control for a general increase in environmental science across the world. There-
fore, the key assumption underlying our difference-in-differences specification is the “parallel trends” as-
sumption, or the assumption that above-median and below-median blocks are evolving similarly in terms
of their likelihood of being studied in a scientific paper. As we will show, our quantitative analysis finds
support for this assumption.

The main outcome variables .8C are the total number of publications, the total number of highly cited
publications (defined as publication with more than 100 cites) and the likelihood of at least one pub-
lication in a given year in a given block. The estimate of V1 can be interpreted as the change in the
level of .8C between above-median blocks as compared to below-median blocks after costs of data ac-
cess have been reduced, and provides the main estimate of the impact of reduced costs of access on
scientific publishing.

Results from this analysis are presented in Table S.2. In all three models, the estimate on V1 is posi-
tive and significant implying that reducing cost of access greatly increasing the amount of publications,
the number of highly cited publications and the likelihood of any publication in blocks with significant
Landsat imagery as compared to those without. Since these are OLS estimates, they can be interpreted
by comparing the estimates with the average level of the outcome variables before 1995. In particu-
lar, the estimates imply that total publications increase by a factor of three (mean 0.15), the number of
highly cited publications by a factor of six (mean 0.0019) and the likelihood of publication increase by
about 50% (mean .047).

Effect of Data Access on Democratization: Authors

Having established that reducing data access restrictions (lowering costs of data) leads to increased pub-
lications, we now turn to estimating whether this change serves to improve the diversity of science. We
examine the effects of reduced restrictions to data by rank of the author(s’) institution(s) and the income
level of the country (or countries) of their institution(s). In particular, we use the same data set used to
produce Figure 2 to estimate the impact of data access on certain groups of authors. Note that our anal-
ysis here is much simpler than the analysis for the baseline analysis. Our goal is not to provide a causal
estimate via a quasi-experimental design, but rather to provide quantitative estimates underlying Figure
2, and establish whether differences are statistically significant. Since our analysis is not at the block
level, we do not rely on the sample used for Table S.1, but rather on the much smaller samples based
on group and year averages.

In Table S.3, Panel A we compare the impact of improved data access separately for institutions ranked
in the top 50 as compared to those in the category 50-200. Before 1995, these two groups of institu-
tions produced about 20 and 30 papers per year using Landsat data. After data access becomes rel-
atively cheaper this number increases by about 49 (column 1) for all institutions, but this increase is
more than double for institutions ranked 50-200. In other words, these institutions increase their total
annual publications by about 95 publications, while those in the top 50 increase publications by only
about 49. These estimates do not change much when including year fixed effects (column 2).

Table S.3, Panel B provides estimates using a similar strategy except by focusing on country income
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category rather than institutional rank. Country income is divided into three groups, the US, other non-
US high-income countries (including western Europe), and rest of the world. Before 1995 non-US high-
income countries and the rest of the world had a similar number of annual publications on average. The
non-US high-income countries and the rest of the world published about 240 and 188 papers yearly, on
average, while the US published about 121. However, as indicated in Panel B, column 2, the increase in
publications post-1995 is about 44 publications for high-income countries, which increases by 428 more
publications for non high-income countries.

Overall, Table S.3 confirms the intuition behind Figure 2 that lowering the costs of data access is par-
ticularly beneficial for authors in lower-ranked academic institutions and those in non high-income coun-
tries.

Effect of Data Access on Diversity: Research Locations

Finally, we now turn to assessing the impact of lowering costs of data access on the types of topics
studied in the focal paper – notably the geographical location of the study. Does lower cost of data ac-
cess also diversity the geographical focus of papers? We employ a similar specification to the regres-
sions measuring author diversity, but instead of conducting the analysis at the publication-level, we are
looking at the effect of reduced data access restrictions on the unique locations studied, classified by in-
come of the studied location country. We do this because there might be multiple locations, around the
world, studied within one publication. For example, if an author based in the United States now pub-
lished a study focused on Egypt and California, we will count this as two unique locations, one as a
high-income location and one as a non high-income location. Table S.4 provides estimates from this
analysis. After restrictions to data access is eased, the number of locations studied goes up by about 70
blocks, but this increase is much greater in non-high income regions of the world, which see a further
increase of about 91 unique locations. Compared to a baseline of about 200 locations, this represents
a near doubling of the number of non high-income blocks studied per year in the literature. Next, we
examine the number of blocks which are studied using Landsat data for the first-time in the literature
(columns 3 and 4). Here too the results are similar. Non high-income regions see about 19 additional
blocks being studied for the first time in the literature every year after data access is made easier, while
the baseline effects for high-income regions is insignificant and close to zero.

Overall, this analysis suggests that lowering the cost of data access greatly increased the diversity of the
regions studied using Landsat data by increasing the representation of non high-income regions as the
topic of study.

Methodological explanation for Figure 3, Panel c - Distance between Authors and Study Locations:
In an ideal type experiment one would sample all blocks, identify all scientists who could potentially
incorporate Landsat data in their research, and then randomly give these scientists access. One could
then examine whether having a treated scientist close by increases the chances of a block being stud-
ied. Several issues – including the fact that sampling all scientists whose work could possibly build on
Landsat data is infeasible – prevent us from conducting such an analysis. We have, however, designed
a counterfactual thought experiment that should address the puzzle too. The question informing the
thought experiment is: If the studies on previously unexplored blocks in the open era had been con-
ducted by authors with data access in the commercial era, would the distance between study location
and author location have been greater than what is actually observed? To answer this question, we need
to assign scientists active in the commercial era to new geographic blocks studied in the open era. Do-
ing so randomly would overestimate the counterfactual distance, but doing so based purely on closeness
will underestimate distance because other factors affect the locations one studies. We therefore establish
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the "preference" for closeness (i.e. distance between author and study location) among scientists in the
commercial era. We do so by matching all locations studied in the commercial era with all authors ac-
tive in that era and by determining where the observed pair (i.e. the location and the scientist who ac-
tually studied that location) ranks in the distance distribution. We then create a list of all combinations
of commercial era authors and new study locations in the open era and use the percentiles obtained in
the previous step to select our counterfactual matches. We then compare the actual and counterfactual
distributions. In contrast to Figure 3, Panel c, Figure S.8 below includes new study locations in the U.S.
The average distance between actual authors and study location is 4,704 kilometers, while the distance
between counterfactual author and study location is 5,430 (t = 3.8669).

Robustness and Additional Results

Finally, we also present additional figures and results that complement the baseline analysis in order to
provide robustness for the overall research design.

Excluding the US: Note that in the our baseline analysis we compare blocks with above-median cov-
erage, with blocks with below-median coverage. Importantly, the Landsat program focused on the U.S.
and therefore the entire continental U.S. has good coverage and is in the above-median category. If U.S.
science has a surge in publications post-1995, then this pattern could confound our results. We there-
fore examine the robustness of our results to excluding U.S.-focused publications. Table S.5 presents
our baseline results excluding all U.S. blocks. The results remain robust and large. Further, Figure S.9
presents figures similar to the ones in the main article, but exclude all U.S. blocks. These figures fur-
ther validate that our baseline results are not U.S.-specific and do not depend on U.S. science only. In
sum, when we drop U.S. blocks from our analysis, the overall conclusion that lowering the cost of data
access improves the quantity, quality and diversity of scientific research holds.

Excluding China: Like U.S. scientists, Chinese scientists are responsible for a large volume of publi-
cations in the Earth and Environmental Sciences. If the rise of Chinese science started around the same
time that Landsat access improved, one might be worried that this trend presents an important confound
for our baseline estimates. To address this issue, we estimated our main regressions on data excluding
blocks in China. The results of these regressions are presented in Table S.6 and show that the main re-
sults are qualitatively similar to earlier estimates on the whole sample. We therefore conclude that the
rise of Chinese science, while important in its own right, is unlikely to have driven the main effect of
data access on the increase of Landsat science.

Time-trends: An important assumption for the validity of the baseline results is that treatment and con-
trol blocks would have followed a similar trend in terms of their outcomes had data access not changed
in 1995. In other words, if control blocks were already gaining publications (perhaps because of the in-
creasingly global nature of academic science), then the difference in the change in publications between
treated and control groups is simply a continuation of a pre-existing differential trend between the two
groups. On the other hand, if the two groups were changing their rate of publications at a similar rate,
then our estimation strategy is valid.

Here we examine this “pre-trends” assumption which is important for the robustness of difference-in-
differences specifications. Specifically, we estimate .8C = U + ΣI VC × �1>E4 − "4380=8 × 1(I)C + W8 +
XC + n8C , where W8 and XC represent block and time fixed effects, respectively, for block 8 and year C, and
IC represents the “lag,” or the number of years that have elapsed since 1995, i.e. the year in which data
access restrictions were reduced. Figure S.5 presents estimates of VC from this regression for the total
publications outcome. These estimates measure the difference between treated and control blocks for
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year before and after 1995 in terms of total publications.

This resulting figure makes two points. First, there are no pre-existing differences in trends between
treatment and control blocks. This is reassuring because it shows that even though treated and control
regions are quite different, their rate of change in terms of publications is similar. Second, there is an
immediate increase in publication activity after data access is made cheaper, and this impact becomes
even larger about four to five years after data access made made possible. This points to the dynamic
role of data access policy on science.

Testing robustness to alternate treatment/control definitions: Our research design relies on compar-
ing blocks with higher coverage with blocks with a lower level of coverage. If the control blocks are
blocks with few images to do research with, why would we expect scientists to study these blocks at
all? Note that our intention is not to compare blocks with many images to blocks with zero or a very
limited number of images. Instead, our strategy is to compare blocks with more images to those with
fewer images. In other words, although below-median blocks have fewer images, the number of images
available, on average, is 6.49. This implies that there were multiple images in the control blocks that
were collected even before 1985 that could be used to do research. In fact, in the area of remote sens-
ing, the first image of any location is very valuable and the value of additional images is significant,
but lower. Past research shows, when researchers are interested in stable environmental features (such
as in geology), the arrival of even a single image can encourage follow-on research and private-sector
discovery in the area of gold mining (7).

Regardless of this point, one might be hesitant about a test that compares blocks with a large number
of images to those with very few or zero images. Therefore, we test the robustness of our estimates to
two alternative specifications. First, we excludes all blocks in the control group with less than five im-
ages to ensure that control blocks have a minimum level of capacity to produce research. Second, rather
than comparing treatment blocks with control blocks by splitting along the median, we split blocks into
three groups: “low” number of images (below median), “medium” number of images (median-90th per-
centile) and a “high” number of images (above 90th percentile). The medium and high category are
subsets of the treatment group and so we are effectively comparing between blocks with sufficient cov-
erage. Estimates from both these tests are presented in Table S.7. Both tests confirm our baseline pre-
dictions. First, we find positive and significant results when excluding blocks with fewer than 5 images.
This suggests that blocks with zero or very few images are not driving our results. Further, the more
the number of images the greater the positive effect. In fact, the baseline estimate jumps to 1.46 for
total publications in the "high" as compared to about 0.195 for blocks in the "medium" category, sug-
gesting that our effect is not dependent on the particular way in which the control group is constructed.

New images added post-1995: We identify our treatment and control blocks based on coverage data
prior to 1985. However the number of images at the block-level is not fixed in time – images are con-
stantly being collected in the commercial and open eras. This fact might lead to at least two concerns
about the images added post-1985. First, treatment blocks may have seen a stronger increase in high
quality images that started in 1995. If that is the case, the main effect of data access on Landsat sci-
ence presented in our paper might be smaller or even zero. Second, one may argue that if new images
mostly covered control blocks and this change coincided with the improvement of data access, we may
have underestimated the true effect of data access. To evaluate these concerns, we collect data on the
number and quality of images collected post-1985 and estimated several regressions in which we in-
clude control variables for the number of post-1985 images.

Specifically, in Table S.8, we add in Total Images (the number of Landsat images taken of that block
in that year); Image Group Fixed Effects (image group buckets: 0, 1-9, 10-30, 31+); and Total Good
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Images (count of images with less than 30 percent cloud cover, taken of that block in that year). The
results presented in this table suggest that after controlling for these variable the estimated effect size
of our Post-95 X Above Media interaction on Total Publications and Any Publications is virtually un-
changed.

Next, in Table S.9, instead of adding variables that capture added images in that year, we add variables
that capture the cumulative number of images. Specifically, we add Cumulative Images (cumulative im-
age count post-1995); Cumulative Image Group Fixed Effects (cumulative image group buckets: 0, 1-9,
10-30, 31+); and Cumulative Good Images (cumulative good image count post-1995, good image de-
fined as an image with less than 30 percent cloud cover). While we do see that the effect size attenuates
to some extent, especially when we control for the cumulative number of images, it remains strong, pos-
itive and significantly different from zero.

Comparing a Broader Set of Non-Landsat Publications to the Landsat Sample

Finally, note that an ideal experiment analyzing the impact of data access costs on science might con-
sider two observationally equivalent and costly data sources and eliminate the costs to one but not the
other. Our research design is different than this ideal, although it approximates it to some extent. Specif-
ically, rather than comparing Landsat publications to publications based on another data source, we
compare Landsat publications in high coverage blocks with Landsat publications in low coverage blocks.
The main assumption is that it is possible to publish science based on Landsat data in both types of
blocks – except that the effective benefits from cost reductions are higher in treatment blocks since they
have a greater number of images. By focusing on this intra-Landsat variation we are able to compare
very similar types of scientific output and isolate the effect of cost variation. However, in addition to
this variation, we might also want to compare Landsat publications to another comparable set of non-
Landsat publications. Among other benefits, such a comparison would help account for the changing
global trends in terms of scientific publishing (for example, the growing focus on Asia and the develop-
ing world).

Accordingly, we developed an empirical strategy as an alternative to our treatment/control distinction
based on Landsat image coverage. Specifically, we collected a 5% sample of publications from SCO-
PUS (a total of 99,454 publications) that are labeled as Earth and Environmental Science publications.4
We then geoparsed these publications and are able to assign 51,976 publications to one or more blocks.
We use the GeoPy and Mordecai Python libraries for this exercise.

Armed with these data, we aggregate by year the number of geoparsed Landsat publications and the
number of publications in earth and environmental sciences. These trends are presented in Figure S.10.
While similar in spirit to Figure 1 in the main text, this figure is constructed using geoparsed publica-
tions at the block level. While both graphs show an increase in publications over time, it is clear that
the increasing trend in publication volume of Landsat science starts in 1996 whereas the increasing
trend in Earth and Environmental Science is relatively constant over time. The graphs also show that
the relative growth in Landsat is much stronger than the growth in Earth and Environmental Science
at any point in time. This is our first hint that Landsat publications increase at a greater rate post-1995
than do publications in the broader Earth and Environmental Sciences field.

Next, we used these data to more formally show the same pattern using a regression model. We build a

4The full sample of Earth and Environmental Science publications is very large and extracting publications from SCOPUS
requires substantial manual labor. We therefore randomly sample 5% of all Earth and Environmental Science publications in a
given year. Sampling publications by year is important to prevent interference with the time trend.
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dataset that includes two observations for each block-year, one that includes that year’s count of Landsat
publications while the other includes that year’s count of Earth and Environmental Science publications.
These data are restricted to the set of blocks with at least one Landsat publication. We also restrict our
attention to the "treatment" group (blocks with above-median images) in the baseline analysis, since
this is where we expect Landsat publications to increase. Using these data, we estimate the following
specification.

.8;C = U + V1 × !0=3B0C; + V2 × !0=3B0C; × %>BCC + V3 × �D<(D<8;C + W8 + XC + n8;C

for block 8 in year C for group type ; that equals one for Landsat publications and zero otherwise. Our
outcome variable .8;C is the number of publications in block 8 in year C by group ;. !0=3B0C; is a dummy
variable that equals one if the dependent variable indicates Landsat publications. We control for the cu-
mulative sum of publications in block 8 until year C by group ;. This control is needed to account for
the differences in level5 between Landsat and Earth and Environmental Sciences. This specification al-
lows us to compare publication outcomes within blocks between Landsat science and Earth and Envi-
ronmental Science, while our main analyses compare Landsat publications between blocks.

The results are presented in Table S.10 and show that using this completely different sample, we are
able to replicate the main results from our earlier analyses. Specifically, we find that Landsat publica-
tions increase following 1995 after controlling for block and year fixed effects. Note that the coefficient
on the !0=3B0C; dummy variable is negative indicating the smaller size of this publication group. We
take these results as evidence suggesting that it is unlikely that increasing trends in research activity in
the Earth and Environmental Sciences are responsible for the treatment effect of data access presented
in this paper.

5i.e. even the 5% sample is substantially larger than the sample of Landsat publications.
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Additional Figures and Tables

Figure S.5: Yearly Estimates of the Impact of Data Access on Follow-on Publications
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Note: The figure describes the impact of lower costs of data access on total Landsat publications over time. The
vertical line represents the year 1995 in which data access costs were reduced. The y-axis plots estimates (and
95 percent confidence intervals) of VC from the event study specification specified in Appendix C. This figure
describes the estimated difference between treatment and control blocks for years relative to 1995.

Figure S.6: Unique Author Locations by Country Income
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Note: This figure plots total number of unique author locations separated by country income categories.
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Figure S.7: How Data Access Affects Study Locations

(a) Unique Study Locations
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(b) First-Time Study Locations by Country Income
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Note: Panel A plots total number of unique locations studied by Landsat publications. Panel B plots total number
of first-time locations studied in Landsat publications separated by country income categories. Overall, the data
suggest that lowering costs of data access particularly helped increase the number of Landsat publications about
lower-income regions around the world.

Figure S.8: Distance between Author and Study Locations, including U.S. locations
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Note: Distribution of actual and simulated distances between author locations and study locations, in kilometers.

15



Figure S.9: Figures Omitting USA Observations

(a) Figure 1a
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(b) Figure 1b
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(c) Figure 1c
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(d) Figure 2b
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Note: The panel labels refer to which figure in the main text these graphs are mirroring, while excluding any US
observations.

Figure S.10: Comparing Landsat and Non-Landsat Publications
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Note: This figure compares the yearly publication trend of our Landsat-related sample to a 5 percent sample of all Earth and Environmental
Science publications (excluding Landsat- and remote sensing-related papers) taken from SCOPUS.
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Table S.1: Baseline Estimates for the Impact of Data Access on Publications

Total Pubs Highly Cited Pubs. Any Pubs.

Post-95 X Above Median 0.437∗∗∗ 0.0121∗∗∗ 0.0251∗∗∗
(0.0644) (0.00183) (0.00241)

Block FE Yes Yes Yes
Year FE Yes Yes Yes
adj. '2 0.0101 0.00448 0.0216
N 216132 216132 216132
Clusters 10292 10292 10292

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note:
This table presents estimates that correspond to Figure 1. The unit of analysis is at the block-year for 10,292 blocks
over 21 years from 1985 to 2005, for a total of 216,132 observations. Estimates are presented from the specification
.8C = U + V%>BCC × �1>E4 "4380=8 + W8 + XC + n8C , where W8 represents block fixed effects and XC represents year
fixed effects. �1>E4 "4380=8=0/1, equals 1 if a block received 18 images or greater from the Landsat program before 1985.
These blocks are the ones that are most likely to benefit after 1995. %>BCC=0/1, equals 1 for all years after 1995, when Landsat
data were available at lower-cost.

Table S.2: Additional Estimates for the Impact of Data Access on Publications

Total Pubs Highly Cited Pubs. Any Pubs.

Post-95 X Above Median 0.157∗∗∗ 0.00564∗∗∗ 0.00856∗∗∗
(0.0236) (0.00131) (0.00240)

Post-99 X Above Median 0.106∗∗∗ 0.00400∗∗ 0.0120∗∗∗
(0.0217) (0.00175) (0.00319)

Post-01 X Above Median 0.468∗∗∗ 0.00866∗∗∗ 0.0196∗∗∗
(0.0745) (0.00241) (0.00344)

Block FE Yes Yes Yes
Year FE Yes Yes Yes
adj. '2 0.0113 0.00484 0.0223
N 216132 216132 216132
Clusters 10292 10292 10292

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: This table
presents a version of the estimates in Table S.1. The main difference is that rather than estimate one %>BCC variable around the
year 1995, we include three interactions with the variables %>BC95, %>BC99 and %>BC01 where %>BC95 is one for years 1996-
1999, %>BC99 is one for the years 2000-2001 and %>BC01 is one for years 2002-2005. Otherwise, the specification is identical to
the baseline specification.
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Table S.3: Panel A: Baseline Estimates for the Impact of Data Access by Authors’ Institutional Rank

Total Pubs Total Pubs

Post-95 49.07∗∗∗
(8.190)

Rank-50-200 12.00∗∗∗ 12.00∗∗∗
(3.859) (3.199)

Post-95 X Rank-50-200 55.27∗∗ 55.27∗∗∗
(25.76) (17.00)

Year FE No Yes
adj. '2 0.511 0.787
N 42 42

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at the rank-group level shown in parentheses. Note:
This table presents estimates that correspond to Figure 2, Panel b. The unit of analysis is at the Top 50-200 institutional rank
category, over 21 years from 1985 to 2005, for a total of 42 observations. Estimates are presented from the specification
.8C = U + V%>BCC ×'0=:50− 2008 + XC + n8C , where XC represents year fixed effects. '0=:50− 2008=0/1, equals 1 if an author
institution was ranked in the Top 200 to Top 50. These blocks are the ones that are most likely to benefit after 1995. %>BCC=0/1,
equals 1 for all years after 1995, when Landsat data were available at lower-cost.

Panel B: Baseline Estimates for the Impact of Data Access by Authors’ Country Income

Total Pubs Total Pubs

Post X Rest-of-World 428.0∗∗∗ 428.0∗∗∗
(115.0) (88.92)

Post X High-Income (non-US) 119.9∗∗∗ 119.9∗∗
(38.15) (56.35)

Rest-of-World 120.1∗∗∗ 120.1∗∗∗
(17.67) (16.53)

High-Income (non-US) 67.30∗∗∗ 67.30∗∗∗
(17.22) (14.67)

Post-1995 44.24∗
(23.15)

Year FE No Yes
adj. '2 0.594 0.745
N 63 63

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at country-group level shown in parentheses. Note:
This table presents estimates that correspond to Figure 2, Panel c. The unit of analysis is at the country-group category of
non-US-High-Income and the Rest-of-World, over 21 years from 1985 to 2005, for a total of 63 observations. Estimates are
presented from the specification .8C = U + V%>BCC × '4BC − > 5 − ,>A;38 + XC + n8C , where XC represents year fixed
effects. '4BC − > 5 −,>A;38=0/1, equals 1 if if the author country is from a country other than the US or non-US high income
countries. These blocks are the ones that are most likely to benefit after 1995. %>BCC=0/1, equals 1 for all years after 1995, when
Landsat data were available at lower-cost.
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Table S.4: Baseline Estimates for the Impact of Data Access by Study Location

Unique Loc. Unique Loc. First-time Loc. First-time Loc

Post-1995 69.38∗∗∗ -0.945
(13.31) (2.047)

High-Income (non-US) -12.60∗ -12.60 8.500∗∗∗ 8.500∗∗∗
(7.404) (7.718) (2.405) (1.817)

Rest-of-World 93.90∗∗∗ 93.90∗∗∗ 42.00∗∗∗ 42.00∗∗∗
(11.16) (9.835) (3.127) (2.677)

Post X High-Income (non-US) -3.764 -3.764 -0.0455 -0.0455
(17.64) (18.57) (2.884) (3.529)

Post X Rest-of-World 160.8∗∗∗ 160.8∗∗∗ 18.91∗∗∗ 18.91∗∗∗
(41.96) (27.31) (5.530) (5.164)

Year FE No Yes No Yes
adj. '2 0.780 0.892 0.898 0.906
N 63 63 63 63

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at country-group level shown in parentheses. Note:
This table presents estimates that correspond to Figures 3, Panel b and SI, Figure SI. S.7(b). The unit of analysis is at the
country-group category of non-US-High-Income and the Rest-of-World, over 21 years from 1985 to 2005, for a total of 63
observations. Estimates are presented from the specification .8C = U + V%>BCC × '4BC − > 5 −,>A;38 + XC + n8C , where XC
represents year fixed effects. '4BC − > 5 −,>A;38=0/1, equals 1 if if the studied location is from a country other than the US or
non-US high income countries. These blocks are the ones that are most likely to benefit after 1995. %>BCC=0/1, equals 1 for all
years after 1995, when Landsat data were available at lower-cost.

Table S.5: Baseline Estimates - Excluding USA Observations

Total Pubs Highly Cited Pubs. Any Pubs.

Post-95 X Above Median 0.238∗∗∗ 0.00473∗∗∗ 0.0187∗∗∗
(0.0429) (0.00129) (0.00241)

Block FE Yes Yes Yes
Year FE Yes Yes Yes
adj. '2 0.0104 0.00265 0.0195
N 201117 201117 201117
Clusters 9577 9577 9577

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: This table
presents estimates that mirror Table S.1, with all USA observations excluded.
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Table S.6: Baseline Estimates - Excluding China Observations

Total Pubs Highly Cited Pubs Any Pubs

Post-95 X Above Median 0.426∗∗∗ 0.0122∗∗∗ 0.0231∗∗∗
(0.0658) (0.00187) (0.00245)

Block FE Yes Yes Yes
Year FE Yes Yes Yes
adj. '2 0.0103 0.00444 0.0195
N 205989 205989 205989
Clusters 9809 9809 9809

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: Excluded
any PIDs (blocks) in China from baseline regression.

Table S.7: Examining Robustness using Alternate Treatment/Control Groups

If Total Pre-1985 Images 5+ New Treatment Var: 1 if 17+, 2 if 149+

Total Pubs Any Pubs Total Pubs Any Pubs

Post-95 X Above Median 0.349∗∗∗ 0.00745∗∗ 0.195∗∗∗ 0.0163∗∗∗
(0.0685) (0.00319) (0.0413) (0.00244)

Post-95 X Above 90th Percentile 1.465∗∗∗ 0.0623∗∗∗
(0.283) (0.00564)

Block FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
adj. '2 0.0113 0.0254 0.0145 0.0228
N 166992 166992 216132 216132
Clusters 7952 7952 10292 10292

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: The first
modification restricts the data to keep observations if the total pre-1985 image count is 5 or greater. This ensures the control
group is not all zero-image blocks. The second modification updates the treatment variable to be categorical: 0 if below median,
1 if above median (17+), and 2 if above 90th percentile (149+) image counts.
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Table S.8: Baseline Estimates Controlling for Total Images, Image Group Fixed Effects, and Total Good
Images

Original Main Reg with Total Images with Image Group FE with Total Good Images

Total Pubs Any Pubs Total Pubs Any Pubs Total Pubs Any Pubs Total Pubs Any Pubs

Post-95 X Above Median 0.437∗∗∗ 0.0251∗∗∗ 0.431∗∗∗ 0.0265∗∗∗ 0.386∗∗∗ 0.0238∗∗∗ 0.448∗∗∗ 0.0270∗∗∗
(0.0644) (0.00241) (0.0616) (0.00247) (0.0557) (0.00242) (0.0661) (0.00251)

Total Images -0.000968 0.000209∗∗∗
(0.00136) (0.0000769)

Total Good Images 0.00191 0.000334∗∗∗
(0.00209) (0.000108)

Block FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
adj. '2 0.0101 0.0216 0.0101 0.0216 0.0113 0.0219 0.0101 0.0216
N 216132 216132 216132 216132 216132 216132 216132 216132
Clusters 10292 10292 10292 10292 10292 10292 10292 10292

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: Image
Group Buckets: 0, 1-9, 10-30, 31+

Table S.9: Baseline Estimates Controlling for Cumulative Images (post-1995), Cumulative Image Group
Fixed Effects, and Cumulative Good Images (post-1995)

Original Main Reg with C. Images with C. Image Group FE with C. Good Images

Total Pubs Any Pubs Total Pubs Any Pubs Total Pubs Any Pubs Total Pubs Any Pubs

Post-95 X Above Median 0.437∗∗∗ 0.0251∗∗∗ 0.229∗∗∗ 0.00992∗∗∗ 0.428∗∗∗ 0.0251∗∗∗ 0.314∗∗∗ 0.0158∗∗∗
(0.0644) (0.00241) (0.0417) (0.00261) (0.0632) (0.00240) (0.0483) (0.00265)

Cumulative Images 0.00220∗∗∗ 0.000160∗∗∗
(0.000497) (0.0000134)

Cumulative Good Images 0.00187∗∗∗ 0.000140∗∗∗
(0.000617) (0.0000186)

Block FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
adj. '2 0.0101 0.0216 0.0119 0.0236 0.0101 0.0217 0.0106 0.0223
N 216132 216132 216132 216132 216132 216132 216132 216132
Clusters 10292 10292 10292 10292 10292 10292 10292 10292

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: Cumulative
Image Group Buckets: 0, 1-9, 10-30, 31+
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Table S.10: Estimates Using New Treatment & Control Specification: Landsat versus Earth & Environ-
mental Science Publications

Total Pubs Any Pubs

Post-95 X Landsat Pub 0.164∗∗ 0.0358∗∗∗
(0.0776) (0.00505)

Landsat Publication -0.291∗∗∗ -0.101∗∗∗
(0.0562) (0.00365)

Cumulative Sum 0.0483∗∗∗ 0.000496∗∗∗
(0.000279) (0.0000182)

Block FE Yes Yes
Year FE Yes Yes
adj. '2 0.566 0.390
N 87738 87738
Clusters 2089 2089

+:p<0.15; *:p<0.10; **:p<0.05; ***:p<0.01, Standard errors clustered at block-level shown in parentheses. Note: Control
group is Earth and Environmental Sciences publications (excluding Landsat- and remote sensing-related papers) and the Treat-
ment is Landsat-related publications. The Cumulative Sum is the cumulative sum of images per block, per treatment/control
group. Sample includes all blocks with at least one Landsat publication and in the Treatment group in terms of image coverage as
per the baseline analysis.
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