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Abstract. How does public data shape the relative performance of incumbents and en-
trants in the private sector? Using a simple theoretical framework, I argue that public data
reduces investment uncertainty, facilitates the discovery of newmarket opportunities, and
increases the relative market share of new entrants relative to incumbents. I shed light on
these predictions by estimating the impact of public data from Landsat, a U.S. National
Aeronautics and Space Administration satellite mapping program, on the discovery rates
of new deposits by incumbents (seniors) and entrants (juniors) in the gold exploration
industry. I exploit idiosyncratic timing variation and cloud cover in Landsat coverage
across regions to identify the causal effect of public data on the patterns of gold discovery. I
find that Landsat data nearly doubled the rate of significant gold discoveries after a region
was mapped and increased the market share of new entrants from about 10% to 25%.
Public data seem to play an important, yet relatively underexplored, role in driving
performance differences across firms.
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1. Introduction
In dynamicmarkets, both incumbents andpotential new
entrants need to discover new opportunities to gain
competitive advantage. For example, incumbents and
potential entrants must invest in discovering promising
new technologies, untapped customer segments, or
unexplored project opportunities to improve perfor-
mance. Because such investment is expensive and un-
certain, firms are increasingly relying on publicly
available resources, rather than internal capital, to reduce
investment costs and discover opportunities ahead of
competitors (Mowery and Rosenberg 1999; Scotchmer
2004; Arora et al. 2015, 2019; Fleming et al. 2019). A
large literature has studied the implications of public
resources for private performance, focusing in par-
ticular on the impact of public financial capital such as
grants, subsidies, and tax credits (Mansfield 1986,
Lerner 2000, Agrawal et al. 2014), as well as publicly
available technology from university or government
laboratories that firms can use to discover newmarket
opportunities and improve their competitive position
(Henderson and Cockburn 1996, Cohen et al. 2002,
Bikard and Marx 2020).

Public finance and public technology are not the
only public resources that can help firms in their quest

to exploit new market opportunities. Firms can also
take advantage of public data infrastructure, which
refers to the basic geographic, economic, and de-
mographic data that governments collect and make
public. Although researchers have not paid much
attention to this channel, it appears firms have long
made use of it. For example, in exploring the deter-
minants ofU.S. leadership in natural resources, David
andWright (1997) provide the example of howmining
companies in Michigan used data from a publicly
funded geological survey published in 1842 to dis-
cover lucrative copper deposits and boost firm per-
formance. The private sector’s use of big data to drive
decision making has grown exponentially in the last
decade, intensifying the strategic implications of public
data infrastructure for the private sector (Brynjolfsson
et al. 2011, Brynjolfsson and McElheran 2016).
The use of public data could not only increase

performance in the private sector, but it could also
influence who profits. Commentators have noted that
public data infrastructure may level the playing field
for entrants and startups by helping them capitalize
on new opportunities ahead of incumbents. In fact,
individual prospectors and small mining companies
were among the primary group who benefited from
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the publication of the government survey data in
Michigan in the 1840s. On the other hand, it is also
possible that public data serves as another source of
competitive advantage for larger firms looking to
keep entrants at bay. Perhaps surprisingly, the lit-
erature on public finance and public technology has
rarely studied the differential role of public support
for different types of firms and has tended to focus
on the aggregate implications of public resources for
firms (Arora and Cohen 2015). A key question re-
garding the interface between public resources and
private competition therefore remains open: how
does public data infrastructure shape the relative
performance of incumbents and new entrants in dy-
namic markets?

To make progress on this question, I present a
simple theoretical model to evaluate the competitive
implications of public data infrastructure. Building
on Nelson (1982), I argue that public data provides
an imperfect but useful signal about the viability
of a risky opportunity to incumbents and potential
entrants, thereby shaping their investment deci-
sion. Depending on the signal provided, public data
could encourage firms who did not invest before
to start exploring or tell firms who explored before
to stop investing. Because incumbents and entrants
have substantially different costs of investment, the
two types of firms respond differently to the same
signal. The model clarifies that public data will not
always help firms discover new opportunities or
help new entrants enter the market (although it
could save companies money). However, given a
sufficient number of firms who face high costs of
investment and a sufficiently informative set of
signals, public data could have a positive effect
on discovery and encourage entrants, resulting in
increased market share for new firms. Ultimately,
whether these conditions hold, and whether the
positive effects of public data on performance and
entry play out in practice, remain empiri-
cal questions.

Accordingly, the heart of this study examines the
empirical impact of public data on the private sector
in the $5 billion gold exploration industry. Gold ex-
ploration is both expensive and risky: it requires
significant capital and years of exploration to identify
a gold deposit. I study the impact of public data from
the U.S. National Aeronautics and Space Adminis-
tration (NASA)’s Landsat satellite mapping program,
which happened to contain useful geological infor-
mation that clarified the value of potential gold de-
posits and thus had the potential to shape firms’ in-
vestment decisions. I focus on the impact of Landsat
satellite maps on two related dimensions: the rate of
discovery of new gold deposits by exploration firms

and the share of new discoveries made by entrants
versus incumbents.
In order to examine the causal role of public data, I

exploit the fact that there was significant variation in
the timing of NASA’s mapping effort across the ap-
proximately 10,000 blocks (regions of 100 mi2 each)
that make up the land mass on Earth. Although many
blocks were mapped in the few years immediately
after the program’s launch in 1972, there was a long
tail of regions that were mapped significantly later
over the next decade. Quantitative assessments (as
shown in Figure 1), and qualitative interviews indi-
cate that though some of this variation was driven
by endogenous choices (i.e., prioritizing the United
States), a large part of this variationwas unintentional
and occurred because of technical failures and cloud
cover in imagery. I combine this variation in the
timing of the mapping effort with data on significant
gold discoveries obtained from a proprietary data-
base of major discoveries between 1950 and 1990. The
quantitative estimates isolate the impact of the quasi-
random variation in the timing of the mapping ef-
fort on exploration outcomes in a differences-in-
differences framework and a battery of robustness
tests help to confirm the validity of this specification.
The results of this empirical analysis suggest that

public data can dramatically improve the discovery of
new opportunities and encourage entry, lowering the
performance advantage of incumbents. In baseline
estimates, mapped regions were almost twice as
likely to see a discovery than unmapped regions after
controlling for region and time indicators. Further-
more, public data from Landsat maps significantly
increased the share of discoveries by firms entering
the gold exploration market: before Landsat, new
firms made about 1 of every 10 gold discoveries; after
regions were mapped by Landsat, this rate jumped
to 1 in 4. Put anotherway, this effect translates to a 5.8-
fold increase in the rate of discoveries by new entrants
and a 1.7-fold increase for incumbents. Furthermore,
an additional test that examines variation across re-
gions in the effect of Landsat on gold discovery by
new firms supports the mechanism that new firms
might have benefited more because they face higher
costs of exploration than incumbent firms. Because
I do not observe costs directly, the corresponding
implications for profitability are beyond the scope of
this study.
This work contributes to our understanding of the

role of the public sector in shaping firm performance
and market entry in markets where firms invest in
risky opportunities to stay competitive. I identify an
understudied channel, that of public data infrastruc-
ture, through which public resources may influence
investment decisions in the private sector. I also
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consider how public data will differentially impact
two types of firms, entrants, and incumbents, based on
the fact that they face different costs of investment. I
explore these ideas both formally and empirically.
Although satellite imagery is one type of public data,
these results suggest that firms (and especially new
entrants) would dowell to pay attention to public data

as a key strategic resource in uncertain market envi-
ronments. Policy makers and governments should
consider data provision as an underexploited lever to
shape private competition and performance.
The paper proceeds as follows. Section 2 discusses

the literature on the strategic implications of public
investment and describes a theoretical framework on

Figure 1. (Color online) Variation in Mapping Coverage

Notes. This figure illustrates Landsat blocks and the variation in their mapping over time exploited in this paper. (a) Location of each Landsat
block, and the color represents the year in which these blocks were first mapped by the Landsat program. Blocks that were not mapped by the
first phase of the Landsat program are represented in the 1983+ category. (b) Histogram for the year in which blocks were first mapped with a
low cloud cover image. The frequency counts of the blocks are on the left y axis and cumulative frequency in percent is represented on the right y
axis. Blocks shown to have been mapped in 1990, are in fact, blocks that I categorize as unmapped because they were not mapped by the first
phase of the Landsat program, but were mapped later by following generations of satellites.
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the role of public data in uncertain markets. Section 3
explains how the Landsat project was implemented
and provides an overview of gold exploration, in-
cluding and the role of incumbent and entrant firms in
the industry and describes the data and research
design. Section 4 highlights key empirical estimates of
the role of public data in shaping discovery patterns
of incumbents and entrants. Section 5 concludes.

2. Theory: Private Impact of Public Data
2.1. Public Investment and Private Performance:

The Role of Public Data
How does public support shape the discovery of
market opportunities in the private sector? Although
the literature’s focus on financial and technological
channels has been insightful, it has overlooked a third
form of public resource that could shape the private
sector: public data infrastructure. Public data infra-
structure includes any type of information about an
underlying topic that is largely funded by govern-
ment institutions. Three prominent examples of such
information could include geographic (e.g., weather
or geological maps), administrative (such e.g., indi-
vidual tax records or patent applications), or scientific
(e.g., the Human Genome Project, astronomical sur-
veys, or protein databases) data (Ray 1997, Card et al.
2010, Graham et al. 2013, Marco et al. 2015, Hill and
Stein 2019). Although this paper defines public data
infrastructure as information being provided by gov-
ernments, it could also include other sources of freely
available data provided by firms (e.g., Google Trends
data) or by nonprofits (such as the Wikidata project).

Much like physical infrastructure, public data forms
a type of basic infrastructural investment used fre-
quently by the private sector and especially by smaller
firms (Munnell 1992, Forman et al. 2012, Agrawal
et al. 2017, Seamans et al. 2017). For example, New
York City’s Business Atlas database has been used by
retail entrepreneurs to inform location choice and
raise capital (Verhulst and Young 2016). In addition,
data on historical prices in agricultural markets are
being used by small farmers to identify new selling
opportunities (Micek 2017). Based on such examples,
proponents of public data have argued that it can help
firms “make better decisions,” making it an “impor-
tant source of economic growth, new forms of entre-
preneurship and social innovation” (Ubaldi 2013, p. 4).

Despite the enthusiasm about public data, we do
not yet have good theory or empirical evidence ex-
ploring how exactly public data might shape firm
performance or competition. Recent work shows that
publicly provided genomic information helps phar-
maceutical firms discover new drugs and new ap-
plications for existing drugs (Jayaraj and Gittelman
2018, Kao 2019). Public data increase scientific pro-
ductivity and helps firms patent at a greater rate

(Furman et al. 2018, Nagaraj et al. 2020). However,
there is much left to understand about how public
information shapes the private sector. Notably, al-
though past studies are largely focused on the ag-
gregate implications of public data, its competitive
implications remain unexplored. That there may be a
differential impact of public resources on different
types of firms has been hinted at in the literature but
has yet to be studied rigorously. As Arora and Cohen
(2015, p. 791) state, “Considerations of the effect of
public support . . . have proceeded with little consid-
eration of whether the characteristics of firms within
industries may significantly moderate that effect.”
This paper directly investigates their theoretical idea
that the impact of public resources might be hetero-
geneous across firm types.
In particular, what is missing from previous re-

search is a comparison of outcomes byfirm size.Many
studies have shown that public resources are used at a
greater rate and are more effective for smaller firms
or entrants (Cohen et al., 2002, Agrawal et al. 2017,
Howell 2017), but they have not compared the out-
comes of smaller firms or new firms to those of larger
firms or incumbents. Two recent papers compare the
differential effects of public investment on private-
sector patenting for larger and smaller firms. Azoulay
et al. (2015) find no differential effect of public sup-
port for larger and smaller firms, whereas Furman
et al. (2018) do find a differential benefit for younger
companies. However, neither study looks at firms
in one industry that compete with each other, and
therefore it is hard to evaluate whether public in-
formation helps smaller firms gain a competitive
advantage against larger ones. In sum, more research
is needed to understand the implications of public
support in the private sector for competition between
larger and smaller firms.

2.2. A Simple Model of Gold Exploration

“Amap is not something that tells youwhere to go, it’s a
tool that lowers the risk involved in your journey. . . . [It]
is the ultimate tool of investment because it derisks a
process.”

—Richard Jefferson, Skoll World Forum 20131

How might public data infrastructure shape the rel-
ative performance of incumbents and potential new
entrants in dynamic markets? Unlike the mechanisms
discussed in the literature, the benefits of public data
do not seem to be technological or financial. Instead,
they are likely to be informational. Specifically, public
data are useful as a mechanism of triaging opportu-
nities (Christin 2019) and guides firms’ investment
decisions “to proceed on a generally better set of
candidate projects” (Nelson 1982, p. 462). Public data
help firms distinguish valuable projects from less
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promising ones and increases the expected value of
the investments the firm makes, thus reducing in-
vestment risk.

Furthermore, the benefits of public data are likely to
disproportionately accrue to entrants. Incumbents
are usually able to finance new projects internally,
which reduces their cost of capital. New firms looking
to enter a market are usually supported by external
and more costly sources of financing. This difference
means that firms facing lower costs (incumbents) are
likely to invest regardless of public information,
whereas firms with higher costs (entrants) are likely
to invest only when the public signal is positive
(Ewens et al. 2018). In the absence of a public signal,
new firms might be deterred from entering the risky
market at all because the expected value of the in-
vestment is too low.With a positive signal, theymight
now successfully enter a new market, creating com-
petition for incumbents. Therefore, public informa-
tion signals might be more valuable to smaller firms
because they are more likely to change their invest-
ment behavior depending on the nature of the public
signal. The following section describes a theoretical
framework based on this intuition. I present a simple
model (along with extensions relaxing key assump-
tions) that explores the conditions underwhich public
datamayincrease thediscoveryofnewopportunities and
encourage entrants relative to incumbents. The empirical
analysis, which follows the theoretical model, examines
whether these conditions are likely to hold in practice.

2.2.1. Setup. Each firm i is evaluating a risky project
(say a tract of land thatmay ormay not have gold) that
has a potential value of V > 0 with probability p0 or 0
withprobability (1 − p0). Firms’ priors of the likelihood
that theirproject isvaluable is equal to the true likelihood,
that is, p0. Firms can invest in exploration at costCi and
get valueV or 0 depending on the state of nature. They
can also not invest and get payoff 0 with certainty.

Exploration costsCi ∈ {CL,CH}, where CL <CH . Firms
come in two types S and J that have the probability
that a randomly chosen firm has Ci � CL equal to ei-
ther xS ∈ {0, 1} or xJ ∈ {0, 1} with xJ < xS. In other
words, costs are binomially distributed with pa-
rameter xS or xJ and a greater share of S firms are low
cost than J firms. This captures the idea that entrants
(e.g., juniors) usually have higher costs of investment
than incumbents (e.g., seniors). The mass of firms in
category S is normalized to one, so that themass of the
firms in category J is M.

Government data are essentially a set of positive or
negative values for all possible blocks. I model gov-
ernment data to be parameterized by parameters p+,
which is the probability of discovery (p0 < p+ < 1)
conditional on a positive signal and p− (p− < p0 < 1),
which is the probability of discovery conditional on a

negative signal. Because beliefs are correct initially, it
must be the case (by Bayes’ rule) that probability of a
positive signal is q � p0−p−

p+−p−. I allow for a map that
provides positive and negative posteriors of differ-
ential strength (i.e., p0 − p− not necessarily equal to
p+ − p0). Also, positive and negative signals are im-
perfect: it is possible that a project has value 0 even
with a positive signal (false positive) and a positive
value with a negative signal (false negative).
Under this setup, firms’ investment decision is

decided according to a simple cutoff rule. When no
public signal is available, firms invest if Ci < p0V.
After the public signal, firms with a positive signal
invest if Ci < p+V and firms with a negative signal in-
vest if Ci < p−V. Therefore, a positive signal raises the
investment threshold and a negative signal lowers
it. Because they have different cost distributions, as I
will show, the same map can have heterogeneous
effects on investments across J and S firms.

2.2.2. Effect on Opportunity Discovery and Entry. I
evaluate the effect of public information on the total
number of opportunities discovered and the share of
J firms, which is related to the total number of S and
J firmswho invest. Depending on the parameter values,
it is possible that firms could have high (i.e., CH >
CL > p0V) or low costs (CL < CH ≤ p0V). In the first
case, no firms invest before the public signal and after
thearrival ofpublic information,firmswithpositive signal
could invest if Ci < p+V, at least for the subset of low-
cost firms. Therefore, investment and discoveries could
weakly increase (decrease) when costs are high (low).
Rather than analyze these (somewhat uninterest-

ing) cases, I will assume that costs are intermediate,
that is, CL ≤ p0V < CH . The key result is that (only)
under the following two conditions, the number of
discoveries increases strictly and the market-share of
entrants increases in lock-step as well: (a) Entry and
No-Exit: CL ≤ p−V and CH ≤ p+V, or (b) Entry out-
weighs Exit: CL > p−V, CH ≤ p+V, and qp+

p0
> xS+xJM

1+M . Con-
versely, the number of discoveries decreases strictly
if and only if CL > p−V and CH > p+V, or CL > p−V,
CH ≤ p+V and qp+

p0
< xS+xJM

1+M . In all other cases the num-
ber of discoveries does not change. What is the in-
tuition behind these results?

2.2.2.1. Entry and No-Exit. In this case, before the
public signal, both low-cost J and S firms invest and
their high-cost counterparts do not. After public data,
the negative signal does not discourage those who
invested previously even if they receive a negative
signal, but it encourages high cost firms with a pos-
itive signal to enter. Therefore, total discoveries strictly
increase for both J and S firms. However, because
J firms are more likely to be higher cost, they are
disproportionately more likely to enter and explore
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after public information. In other words, before the
signal, only the lower-cost S and J firms explore,
making the market share of J firms equal to MxJ

MxJ+xS.
After the signal, all lower-cost firms continue to ex-
plore, but all higher-cost firms who get a positive
signal explore as well. Therefore the market share of J
firms increases to

qp+ + (1 − q)p−xJ( )
MJ

(qp+ + (1 − q)p−xJ)MJ + (qp+ + (1 − q)p−xS) .

2.2.2.2. Entry Outweighs Exit. In this case, J and S
firms with low costs and a negative signal exit (i.e.,
CL > p−V) and high-cost firms with positive signal
enter (i.e., CH ≤ p+V). The overall effect on total dis-
coveries, then, depends on two margins. For either
S-led or J-led discoveries, lower the share of low-cost
firms, the greater the likelihood of entry. The second
factor is the structure of signals, specifically the
strength of the signal p+ and the likelihood of positive
signal, relative to p0. The intuition here is that con-
ditional on the same number of firms investing, a
stronger posterior p+ and an increased likelihood of a
posterior leads to more discoveries increasing the
total number of discoveries. In fact the two factors are
related, such that discoveries for each category in-
crease if and only if xJ and xS are under the specified
threshold. In fact, total discoveries changes from
p0(xS + xJM) to qp+(1 +M) and therefore, total dis-
coveries increase if qp+(1 +M) > p0(xS + xJM), that is,
if qp+

p0
> xS+xJM

1+M .
In terms of J market share, before the signal only the

low-cost firms explore and after the signal, only firms
that receive the positive signal explore. Therefore,
preinformation shares are MxJ

MxJ+xS, whereas the J mar-
ket share after public data changes to simply M

M+1.
Therefore, J-market share increases. In fact, qualita-
tively, I have the result that the only case where the
share of higher-cost J firms decreases is if the total
number is at its maximum before public information
is provided (i.e., the entire mass of J firms invests) and
some of these firms stop investing after a negative
signal. In all other cases, the share of J discoveries
increases as compared with S discoveries (see Online
Appendix B for a formal derivation).

Finally, it is also interesting to consider the deter-
minants of the share of higher-cost Jfirmsasa functionof
the cost difference Δx � xS − xJ keeping xS fixed. This
allows us to examine the predictions of the model
where J and S firms are separated only by their cost
distributions (rather than on other, equally interest-
ing dimensions such as the quality of their priors).

Specifically, in the intermediate cost case (CL ≤
p0V < CH), if the share of discoveries by J firms goes
up, then change in share of J firms is also increasing

in Δx. To see why, the change in J cost share is pro-
portional to the following expression:

M
M + 1

− MxJ

MxJ + xS
.

This term is decreasing in xJ and hence increasing
in Δx. This result is driven by the fact that the increase
in the J-share largely relies on higher share of low-cost
firms among S-type firms. If this difference becomes
larger, then the effect on the share of J firms becomes
more pronounced. However, if the cost gap between
junior and senior firms is so high that premapping
market share for juniors is zero (i.e. the high-cost
case), then we expect these results to flip. In other
words, if the total amount of discoveries goes up
(CL < p+V), the share of juniors decreases in Δx
(CH > p+V) or does not depend onΔx (CH ≤ p+V). This
is because either we do not get any change in the share
of juniors or because change is decreasing in the
difference in shares of low-cost firms.
Overall, we have the prediction that there is an

inverted-U pattern of junior market share as cost gap
increases between juniors and seniors. Increases in
the junior cost-disadvantage initially lead to a greater
benefit from mapping for this sector, but eventually
this relationship becomes downward sloping. I will
test this prediction in the empirical section as one test
for the cost channel.

2.2.3. General Cost Distributions andCompetition. The
analysis thus far has assumed a binomial cost dis-
tribution and no competition between firms in the
discovery of new opportunities. In Online Appendix B,
I present results that relax both these assumptions.
First, I evaluate the results using a general cost dis-
tribution rather than assume that costs are binomially
distributed. The key insight that the overall effect of
the map depends on the relative mass of firms who
exit following a negative signal and those who enter
following a positive signal remains valid.When relaxing
the assumption about cost distributions, mathemati-
cally, the relationship between entry and exit is
now affected by not only the extent of updating (i.e.,
p+ − p0 and p0 − p−) but also the mass of the cost
distribution affected by the new signal. The key re-
sults therefore depend not just on whether the map is
able tomove firms’ priors, but also onwhether there is
sufficient mass of firms in the part of the cost distri-
bution affected by the signals from public data. In
particular, I discuss the case of the uniform distri-
bution where mass is evenly distributed for all costs
between the upper and lower bound. Although in the
binomial case, the results depend on x, for a uniform
distribution that is wide enough (i.e., there are always
firms who have cost high enough not to explore with
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positive signal, and firms who are so efficient they
explore under negative signal), the effect on discov-
eries is always positive.

Next, I also relax the assumption that firms do not
compete in the discovery process. In this extension, I
assume that N firms compete to explore on K different
projects. Each firm must choose whether to invest at
cost Ci, and if so, on which project to invest. Multiple
firms can invest in a single project. The payoff con-
ditional on investment is pkV/Nk where pk is the
probability of discovery for a given project k and Nk
is the total number of entrants for that project. In-
formation and cost structures are the same as the
baseline model. Following the literature (Bresnahan
and Reiss 1990, Berry and Reiss 2007), firms engage in
sequential competition, with firms who come later
being able to see that history of past investments and
project choices. Under this framework, I find that a
sufficient condition for number of discoveries to in-
crease is x < (q) × (p+p0) × (KN).

The intuition is similar to the baseline result: as long
as the number of low-cost firms is not too large, public
data have the potential to increase the total number of
discoveries. The key additional wrinkle that emerges
in this framework is that the acceptable share of low-
costfirms also depends onK/N. The larger the number
of projects relative to the number of firms, the more
likely it is that public data increases discoveries.
When projects are limited and the number of firms are
many, the value of public data are more limited in
increasing discoveries. In other words, a public map
is most useful it describes a large landscape of po-
tential projects to a relatively limited number offirms.
Online Appendix B.3 provides details.

Overall, the theoretical exercise outlines that public
data has the potential to increase the discovery of
market opportunities and encourage entry. However,
for this result to hold, public datamust be informative
and investment costs must be sufficiently high. In
competitive markets, the number of possible oppor-
tunities in relationship to firms should be large. To
examine whether these conditions hold in practice, I
turn to examining the role of geological signals from
NASA Landsat images on shaping the discovery of
new gold deposits by seniors (incumbents) and ju-
niors (potential entrants).

3. Empirical Setting and Data
3.1. Setting
3.1.1. Landsat Program. Landsat is the first and
longest-running program to provide images of the
Earth from space and offers a prime example of public
data of relevance to the private sector. Starting in 1972,
the Landsat program has overseen seven satellite
launches that capture images of Earth with multi-
spectral cameras. The resolution of the images does

not allow for observing specific buildings or struc-
tures, but the images are useful for analyzing land use
and geological features such as fractures in the surface
of the earth. Each image from the first generation of
the Landsat program covers an area of about 100× 100
miles. In my data set, I include the 9,493 satellite
images that are required to cover all of Earth’s land
masses (not including Antarctica and Greenland).
The unit of analysis in this paper is a block of land that
corresponds to a Landsat image.
The focus of this paper is the first generation of

satellites in the Landsat series (Landsats 1, 2, and 3)
that operated between 1972 and 1983. It was not
possible for NASA officials to significantly change the
orbits of these satellites; however, program operators
usually controlled what locations were prioritized for
data collection through regular instructions issued to
the satellites. The Landsat satellites orbited the sur-
face of the earth every 18 days, so in principle, it was
possible to capture an image of every location on
earth every 18 days. In practice, however, the cameras
did not operate at all times because of technical and
operational issues (Goward et al. 2006, p. 1155), and
many regions were left unmapped for almost a de-
cade after the launch of the program because of dif-
ficulties with collecting, storing, and relaying data
back to NASA. I discuss the timing of Landsat images
in more detail in Section 3.3.
The photos taken by the Landsat satellites were

relayed to the Earth Resources Observation and Sci-
ence (EROS) center in Sioux Falls, South Dakota. The
center then distributed the data as tapes or physical
images at a reasonable cost and without intellectual
property considerations, as required by law. The
prices for the data ranged from about $10 for a 10-inch
negative to about $50 for a 40-inch color photograph
(Draeger et al., 1997). Because all Landsat imagery
was collected at EROS, by studying the archives of
this institution, I am able to collect information as to
the location of each block, when each block was
imaged, and the quality of the images, including a
measure of cloud-cover at the image level.2 According
to one estimate, the cost of the program when it was
launched in 1972 was approximately $125 million
(Mack 1990, p. 83).

3.1.2. The Gold Exploration Industry. Gold is the next
most intensively explored natural resource after oil
and gas, and gold mining is a capital- and time-
intensive process. Even though satellite imagery is
helpful for all types of mining, the gold mining in-
dustry is one of the largest in this field and allows for a
clear comparison between seniors and juniors. Se-
niors are large incumbent firms that both operate
mines and invest in exploration and juniors are small
entrant firms mostly funded by risk capital that are

Nagaraj: The Private Impact of Public Data
Management Science, Articles in Advance, pp. 1–19, © 2021 INFORMS 7



purely in the exploration business (Humphreys 2016).
Junior firms are treated as market entrants because
they are looking to make their first (and usually only)
major discovery and thereby enter the market. A
successful junior will return the proceeds to their
investors and founders through sale or acquisition of
the assets and so it is rare for a junior to transition to a
senior, although some juniors have made this tran-
sition. Government geological agencies are also in-
volved in gold exploration, and given their relatively
large size, they will be treated as part of the se-
niors group.

Seniors and juniors explore for gold through a
risky two-step process: initial triaging using remotely
sensed information sources such as satellite imagery
followed by more expensive on-the-ground explo-
ration and drilling. For a given target, a key decision
for a firm is to use cheaply available information in the
first step to decide whether to invest more costly re-
sources in follow-on exploration. The key question is
whether access to public data in the first step changes
the relative discovery rates for juniors and seniors.

This two-step process is costly, and juniors face
disadvantage in this regard relative to seniors. While
seniors usually fund exploration through internal
sources, juniors rely on more costly sources of ex-
ternal capital (e.g., private placement or equity fi-
nancing) (Humphreys 2016). Juniors also face higher
costs of access to physical assets (such as drilling
and survey equipment) because they are not able to
spread the costs of this equipment across projects like
senior firms. Juniors also face higher transaction costs
(e.g., obtaining property rights, environmental as-
sessments, and other permissions from local gov-
ernments) relative to seniors because they fewer have
connections and lower experience with these activi-
ties (Schodde 2014).

Not only do juniors face higher costs of exploration
as compared with seniors, these differences also vary
by geography. In particular, this difference increases
in regions with poor institutions because uncertain
property rights and the resulting risk of expropriation
increases exploration costs. For example, the Amer-
ican junior firm Mundoro Mining that was operating
in China for over five years had to leave the country
after discovering promising prospects because gov-
ernment agencies would not grant them the relevant
business and exploration licenses (Hart 2014, p. 135).
Such incidents are common with junior firms, and
therefore investors increase their cost of capital seek-
ing additional return for investing in regions where
property rights are less assured. Higher capital costs
and increased expropriation risk means that the cost
difference between juniors and seniors increases in
regions with poor institutional quality.

The arrival of Landsat imagery in the early 1970s
had important implications for the gold mining in-
dustry and techniques to use satellite imagery to
guide gold exploration were discovered (Rowan 1975,
Vincent 1975, Rowan et al. 1977, Krohn et al. 1978,
Ashley et al. 1979). Landsat imagery allowed geolo-
gists to spot geological features, such as faults and
lineaments, that might otherwise have gone unno-
ticed. Accurate knowledge of faults and lineaments is
crucial for geologists because mineral resources often
occur along these features. Landsat was the only sat-
ellite imagery provider in this period, and although far
from perfect, it was an important tool for firms to
reduce uncertainty in their exploration process.3 Al-
though it was possible to use airplanes to collect ae-
rial imagery (Spurr 1954), this process was expensive.
In the context of the theoretical framework, Landsat

information can be thought of as providing positive
signals when certain geological features associated
with gold deposits are present and negative signals
when such features are absent. Although firms had a
general idea of the overall probability of discovery
for a set of projects (p0), Landsat can be modeled as
providing a negative signal for a majority of projects,
but increasing expected probability of discovery for a
small number of promising ones. If many junior firms
were not investing because of high exploration costs
and were induced to invest as a consequence of a
positive signal, we might expect Landsat data to
encourage discovery and entry. Although the use of
Landsat information is widespread and textbooks
claim that “providing basic geoscientific information
by governments can act as a catalyst for mineral ex-
ploration in unexplored areas,” the empirical effects
of Landsat information on gold exploration remain
unexamined (Gandhi and Sarkar 2016, p. 177).

3.2. Research Design
Although Landsat information was useful for the
gold exploration industry, it was not available for all
regions of the world at the same time. Instead, there
was significant variation in time and space across
which Landsat data were collected and made avail-
able. Before using this variation to examine the effects
of public data on gold exploration, it is important to
understand the drivers of this variation. Although
cross-sectional variation linked to a region’s potential
for gold is controlled for via block fixed effects, the
concern still remains that gold exploration firms are
shaping the trajectory of satellite mapping. If firms
lobby NASA to increase coverage in regions of in-
terest to them, reverse causalitywould be a significant
issue in the research design.
However, investigations of variation in coverage by

Landsat experts suggest that rather than lobbying,
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timing variation is likely related to (a) administrative
decisions to focus on complete coverage of the con-
tinental United States and (b) technical failures in
mission operations (Goward et al. 2006). In fact, this
variation was both unexpected and unnoticed until
quite recently. An interview with a Landsat admin-
istrator confirmed, “What we had not expected to see
in the coverage maps were the variations in the
geographic coverage achieved from year to year. . . .
As we investigated further, we found that techni-
cal issues such as the on-board tape recorders on
Landsats 1, 2, and 3, which typically failed early in the
missions, may have caused the annual or seasonal
gaps in coverage” (Interview, April 8, 2015). The
Landsat administrators I interviewed also said that
the Landsat planning teamwas deliberately insulated
from firms in the private sector (such as exploration
companies) because NASA did not want to be seen to
be catering to the needs of a select few. Beyond
technical limitations, variation in coverage was also
due to cloud cover, which remains a central challenge
in the remote sensing industry. Cloud-cover is un-
predictable and hard to work around as indicated by
one of my interviewees: “Our ability to predict clouds
[is limited] . . . after a few tries you might end up with
only about one or two scenes that are very clear”
(Interview, November 22, 2014).

Beyond this qualitative validation of the research
design, Figure 1 provides a map showing the timing
of the mapping effort across blocks around the world
(a), as well as a histogram of the years in which blocks
were first mapped by the Landsat program (b). This
evidencemakes clear that (i) there is significant variation

in terms of the geographic location of blocks that
were mapped early or late (although there is signifi-
cant clustering, especially in the United States), and
(ii) whereas a majority of the blocks were mapped for
the first time in the first two years of program oper-
ation, there is a long tail of blocks that were mapped
considerably later in the program.A simple time-series
comparison of average gold discoveries between
blocks that received Landsat coverage early (mapped
1972–1974) versus late (after 1974) confirms this find-
ing (Figure 2(a)). Rather than showing that blocks
mapped early were in regions known for their po-
tential for gold, this figure suggests no correlation
between average discoveries and the timing of map-
ping: discoveries in blocks mapped early and late had
fairly flat and parallel growth rates before 1973, when
Landsat data were first made available.

3.3. Data
Having built some confidence in the validity of the
research design, I now turn to describing the data
needed to explore the relationship between Landsat
maps and the discovery of new gold deposits. The
data set I build is at the block level and (a) quantifies
the timing and spatial variation in Landsat coverage,
(b) records gold discoveries by juniors and seniors,
and (c) (to examine the cost channel) provides indi-
cators for cost differences between juniors and seniors.

3.3.1. Landsat Coverage Data. I construct a data set of
the timing and spatial variation of Landsat images
from the EROS data center’s sensor metadata files.4

These data help me construct my main independent

Figure 2. Impact of Landsat on Gold Discoveries over Time

Notes. The figures depict the impact of Landsat imagery on gold discovery over time. (a) Average discoveries over time of blocks mapped early
(1972–1974) and blocksmapped later (after 1974). The vertical line at 1972 showswhen the Landsat program commenced operation. (b) Estimates
and 95% confidence intervals of βt from the event study specification in Section 4.1. This panel describes the estimated difference between
treatment and control blocks for years relative to a year zero, which marks the year when a block first received low-cloud imagery.
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variables by providing a list of all images collected by
the Landsat cameras, including the location being
imaged, the date the image was collected, and in-
formation about the quality of the image, including an
assessment of cloud coverage in the image (Goward
et al. 2006). First, for each block, I record the first time
that it was mapped by the Landsat program to form
the Post Mappedit indicator variable. The data were
made available for follow-on use immediately after
theywere available at the EROS data center, and there
were no significant delays in disseminating this in-
formation to downstream users. Second, I construct
the variable Post Low − Cloudit, which is an indicator
variable expressing whether a block’s image has
sufficiently low cloud coverage to be useful, defined
by experts as less than 30% cloud cover.

3.3.2.MeasuringDiscoveries. It is a nontrivial exercise
to collect data on all gold discoveries by junior and
senior firms because there is no official database that
tracks such discoveries. I worked with a private
consulting firm to create a database that provides
the date, location, and additional details about eco-
nomically significant gold discoveries reported be-
tween 1950 and 1990 (Schodde 2011). These data have
been collected over a period of 15 years using press
reports, disclosure documents, and other industry
sources. I match the location of each discovery to a
specific block. Since multiple discoveries in the same
block-year are extremely rare, my key dependent
variable is Any Discoveryit, which is an indicator var-
iable for whether a discovery was made in a given
block-year. In total, 460 unique blocks have seen a
total of about 740 significant discoveries between
1950 and 1990 (as shown in online appendix Fig-
ure D.1). Furthermore, for each discovery, the data-
base lists the names of one or more entities respon-
sible for the discovery and a classification of whether
these firms are juniors or seniors. The data provider
lists a firm as a junior if it is primarily involved in
exploration and is looking to enter the industry since
it does not have any operating mines, while seniors
are incumbents who already operate existing mines.
Online Appendix A provides more details on data
construction, how discoveries are defined, and how
the date of discovery is coded.

What counts as a new discovery is a matter of sig-
nificant debate among geologists because some sites
could be rediscovered, whereas nondiscoveries could
later turn out to be meaningful (Slade 2001). Fur-
thermore, discoveries might be under-reported in
certain regions (e.g., erstwhile USSR or China) or
might be exaggerated or even falsified (Brown and
Burdekin 2000). Although it is difficult to completely
address this challenge, selective discovery does not
pose a serious threat in this setting because (a) a cross-

validation exercise with comparable data sets shows
that 93% to 99% of all valuable discoveries are in-
cluded (Schodde 2011), (b) the results are robust to
using only large discoveries (more than 2.2 million
ounces of proven reserves) where these challenges
should be more limited, and (c) because I define
discovery as the date of the first economic drill in-
tersection which is a conservative method to define a
discovery. Finally, as I will demonstrate, my results
are robust to switching to an alternate source of
discovery data that I purchased from SNLMetals and
Mining, although these data are available only for the
later years in my study period.

3.3.3. Measuring Cost Variation. Next, I collect data to
explore whether the change in junior market share in
the presence of public data stems from their cost
disadvantage. In particular, I rely on the Survey of
Mining Companies, conducted by the Fraser Institute
(Jackson 2014) in 2014, which measures institutional
conditions in the mining industry to obtain a rela-
tively good measure of the institutional barriers to
operating in a region or country. As described in Sec-
tion 3.3.2., my assumption here is that these barriers
increase project costs more for junior firms than for
senior firms because senior firms are able to over-
come institutional and regulation-related barriers at
a lower cost. Responses are collected from surveys
administered to more than 4,200 managers in the
industry who are asked about costs of exploration
arising from institutional features such as environ-
mental regulation, legal institutions, labor regula-
tions, and so on. I use this survey to categorize blocks
in jurisdictions that rank below the median on this
dimension in this survey as places where juniors are
likely to have larger costs as compared with seniors.

3.3.4. Summary Statistics. Table 1 lists the key vari-
ables used in the quantitative analysiswith the summary
statistics for the sample. Panel A provides summary
statistics for key variables that vary at the block-year
level. The main outcome variable is Any Discovery,
which is an indicator variable that is set to 1 if a new
gold discovery is reported in a block-year. This var-
iable is scaled by a factor of 100 for legibility throughout
the analysis. The mean of this variable is 0.188, which
means that there is a 0.188% chance that a discovery is
reported in a block-year. Any Junior Disc is set to 1
when Any Discovery takes the value of 1 and at least
one discoverywas reported in a block-year by a junior
firm. On average, 0.038% of block-year observations
had a junior-led discovery. Panel A also provides
summary statistics for the key independent variables,
Post Mapped and Post Low − Cloud, which are indi-
cator variables that are set to 1 if a block has been
mappedormappedwith a low-cloud image, respectively,
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by the Landsat program. There is a small percentage
of blocks that were never mapped by the first gener-
ation of the Landsat program. For these blocks, the
Post Mapped and Post Low − Cloud variables are al-
ways set to zero, although the results are robust to
excluding these blocks altogether (online appendix
Table D.5B). Table 1, panel B, provides summary
statistics for variables that vary across blocks but not
over time. These data indicate that about 4.8% of the
blocks reported a discovery between 1950 and 1990
and about 3.9% of blocks reported a discovery after
1972, the year when Landsat was launched. These data
also show that themedian blockwasmapped by a low-
cloud image in 1972; however, there is a long tail of
blocks that remain unmapped until 1990.

4. Results
I now turn to analyzing whether Landsat maps boosted
the discovery of gold and whether any potential in-
creases accrued differentially to juniors as compared
with seniors.

4.1. Did Landsat Increase Gold Discovery?
I use Ordinary Least Squares (OLS) to estimate the
following regression specification using the block-
year level panel: Yit � α+ β1 × Postit + γi + δt + εit,
where γi and δt represent block and time fixed effects
respectively for block i and year t. Yit indicates either
the total number of discoveries or the number of
discoveries by senior or junior firms in a given block-
year. The term Postit represents either Post Mappedit
or Post Low − Cloudit, which equal to one for a block
after it has been mapped or it has been mapped with
a low-cloud image, respectively. This specification

compares the difference between blocks that have
received mapping information with blocks that have
yet to receive maps in a differences-in-differences
framework. If blocks that are mapped earlier by
Landsat do indeed report more gold discoveries and
earlier discoveries than blocks mapped later, then I
should find that the difference-in-difference estimate
β1 is positive. All my specifications cluster standard
errors at the block level to address the concern that
discoveries within blocks are likely to be correlated
over time. In additional robustness checks, I include
more general clustering (e.g., at the country and block-
group levels) that takes seriously spatial proximity
between different blocks. I find that the results are
generally robust to these additional restrictions.
Table 2 presents estimates from this regression

for Total Discoveries for both the Post Mappedit and
Post Low − Cloudit variables without (columns 1 and 2)
and with block fixed effects (columns 3–5). The coeffi-
cients generally reduce in size after controlling for
block fixed effects, indicating their importance in this
setting. The main result is that, after controlling for
block- and year-level fixed effects, there is a positive
impact of Landsat images on gold discovery sug-
gesting that public data can increase private perfor-
mance. Specifically, the estimate of β1 indicates an
average increase of between 0.152 and 0.164 per-
centage points on the likelihood of a gold discov-
ery after a Landsat image becomes available, a sig-
nificant increase given that the baseline rate of
discovery is about 0.19%. This means the rate of
discovery in imaged regions is almost doubled, al-
beit on a low base-rate. Column 5, which includes
bothPostMappedit and Post Low−Cloudit, is particularly

Table 1. Summary Statistics

Variables Mean SD Median Minimum Maximum

Panel A: Block-year level

Outcome
Any discovery (%) 0.188 4.33 0.000 0 100
Any junior discovery (%) 0.038 1.94 0.000 0 100

Landsat coverage
Post mapped 0.409 0.49 0.000 0 1
Post low-cloud 0.381 0.49 0.000 0 1

Panel B: Block level

Outcome
Total discoveries 0.083 0.52 0.000 0 16
Total junior-led discoveries 0.017 0.18 0.000 0 7
1(ever discovered)% 4.846 21.47 0.000 0 100
1(discovered post-1972)% 3.940 19.45 0.000 0 100

Landsat coverage
Year first mapped 1,973.222 3.58 1,972.000 1,972 1,990
Year first low-cloud 1,974.368 5.19 1,972.000 1,972 1,990

Notes. Blocks correspond to Landsat images that divide the planet in blocks of approximately 100 × 100 miles. All blocks that cover the earth’s
landmass are included and water bodies (as well as Antarctica and Greenland) are excluded, resulting in a total of 9,493 blocks in my sample.
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interesting because the coefficient on Post Low − Cloudit
variable is 0.155 and significant, whereas the estimate
on the Post Mappedit variable is small and not statis-
tically different than zero. This suggests that the effect
of the Landsat mapping depends on its information
content (rather than any other channels).

4.2. Junior vs. Senior Discoveries
Taking the theoretical model seriously, the baseline
results indicate the conditions needed for Landsat
images to lead firms to increase discovery are likely to
hold in practice. Landsat imagery seems to have been
informative inmoving firms’ assessments of potential

targets. And perhaps more importantly, gold explo-
ration seems to be sufficiently costly that the number
of nonexploring firms incentivized to explore fol-
lowing a positive signal seems to have outweighed
the number of exploring firms who might have
stopped exploring after a negative signal. I now test
the prediction that junior firms are more likely to in-
crease their market share as compared with lower
cost incumbents.
As a preliminary exercise to examinewhether Landsat

benefits junior firms more than seniors, Figure 3(a)
compares the average number of discoveries by ju-
niors and seniors before and after the arrival of a low-
cloud image. Before public mapping, juniors are a
very small part of the industry, making an average
of only 0.007 discoveries per block-year, whereas
seniors make about 0.069 discoveries per block-year.
However, these proportions change drastically post-
mapping. Both seniors and juniors increase their
rate of discoveries significantly, but juniors have a
much greater increase. Specifically, juniors now
make an average of 0.087 discoveries per block-year
while seniors make about 0.29. In other words,
junior market share increases from about 9.2% to
about 23%.
I estimate regressions similar to the baseline spec-

ification to formally test this pattern. I first set the
dependent variable equal to 1 if junior firms made a
discovery and 0 otherwise (Table 3, columns 1 and 2)
and then set the dependent variable equal to 1 if senior
firms made a discovery and 0 otherwise (Table 3,
columns 3 and 4). The estimates of β1 from these re-
gressions provide separate estimates of the increase in

Table 2. Baseline Estimates for the Impact of Landsat on
Gold Discovery

Any discovery

Variables 0.251∗∗∗ 0.152∗∗∗ 0.0178

Post mapped (0.0265) (0.0294) (0.0399)
Post low-cloud 0.267∗∗∗ 0.164∗∗∗ 0.155∗∗∗

(0.0276) (0.0274) (0.0370)
Block fixed effects No No Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
N 389,213 389,213 389,213 389,213 389,213

Notes. Standard errors clustered at block-level shown in parentheses.
Block-year level observations, estimates from OLS models. The
sample includes all block-years from 1950 to 1990 (9,493 blocks for
41 years equals 389,213 block-year observations). Post Mapped: 0/1 = 1
for a block-year after the first image has been received and
Post Low − Cloud: 0/1 = 1 for block-year after the first low-cloud
image (less than 30% cloud cover) has been received. 1(Discovery):
0/1 = 1 if a discovery is reported in a block-year.

+p < 0.15; *p < 0.10; **p < 0.05; ***p < 0.01.

Figure 3. Average Discoveries by Juniors and Seniors Pre- and Post-Mapping

Notes. (a) Average discoveries for juniors and seniors for all block-years before and after a block is mapped by a low-cloud image. (b) Estimated
juniormarket shares using the baseline specification across three kinds of blocks based on cost differences between juniors and seniors as proxied
by ameasure of institutional quality. Regions that rank highly on this measure (first quartile) comprise the low-cost group, regions in the middle
(second quartile) are the medium-cost group, and below-median regions are the high-cost group.

Nagaraj: The Private Impact of Public Data
12 Management Science, Articles in Advance, pp. 1–19, © 2021 INFORMS



discovery by juniors and seniors, facilitating a com-
parison of whether Landsat helped one group more
than the other.

Estimates in Table 3 suggest that the impact of the
Landsat program on juniors is about 0.047 while
the impact for seniors is about 0.12. In other words,
the total gain from the Landsat program (about
0.16 percentage points more) is divided such that
smaller firms make 0.04 percentage points more
discoveries per block-year while seniors capture the
remaining 0.12 percentage points. In terms of per-
centage points, it seems then that seniors benefit
more than juniors from the Landsat mapping effort.
However, when the previous market share of ju-
niors is taken into consideration, this interpreta-
tion changes considerably. Specifically, before the
Landsat program was launched, the probability
that a junior firm would make a gold discovery in a
given block-year was just 0.008%, whereas for se-
niors it was 0.0694%. This suggests that seniors
were almost entirely responsible for new gold
discoveries prior to the Landsat program. After the
arrival of Landsat images, however, juniors made
one out of every four discoveries. Thus, it seems that
the Landsat program encouraged the entry of junior
firms in this industry by allowing them tomake new
discoveries. Put another way, juniors were 5.8 times
more likely to report a discovery in mapped regions
than in unmapped regions, while seniors only
benefited by a factor of 1.7. Therefore, the estimates
suggest that even though seniors made a significant
portion of new discoveries in mapped regions, their
market position eroded considerably, and juniors
were able enter and make considerable gains in
performance.

4.3. Robustness Checks
The central result of this study around increased total
discoveries and increase junior market share rely on a
number of assumptions about the validity of the
baseline specification. I investigate a number of these
assumptions in detail. I test the robustness of the
design with the baseline estimates on total discov-
eries, and then provide additional robustness checks
for the results specific to junior and senior firms.

4.3.1. Time-Varying Estimates. First, I estimate the
time-varying impact of Landsat coverage on gold
discovery in order to examine whether preexisting
differences in gold discovery trends between recently
mapped and soon-to-be-mapped places do not drive
the key outcomes. Specifically, I estimate Yit � α+
Σz βt × 1(z) + γi + δt + εit, where γi and δt represent
block and time fixed effects, respectively, for block i
and year t, and z represents the lag, or the number of
years that have elapsed since a blockwasfirstmapped
with a low-cloud image. For the small percentage of
blocks that never get a low-cloud image, z is always
set to zero. Figure 2(b) presents estimates of βt from
this regression, which measure the difference in the
number of discoveries between imaged and non-
imaged blocks for every lag year. This figure makes
two points. First, there are no preexisting differences
in gold discovery trends between blocks mapped
early and those mapped late. Second, there is a large
and persistent increase in discoveries that appears
after about seven to eight years after a low-cloud
image. This delay accords well with my interviews
with personnel at gold exploration companies, who
confirm that Landsat images contribute to early-stage
exploration and are typically followed by years of
further exploration before a gold discovery occurs.

4.3.2. Instrumental Variable and Cross-Sectional
Specifications. First, in addition to the baseline
specification, I also investigate a set of specifications
that use cloud-cover as an instrument for the timing of
Landsat mapping. I describe this strategy and present
the results in Online Appendix C. Overall, the in-
strumental variable analysis confirms the baseline
specification, although these results are considerably
larger. Although the IV provides a useful check on
the baseline estimates, I emphasize the baseline es-
timates, which are more conservative and where the
identifying variation is more transparent.
Second, I also implement a cross-sectional specifi-

cation that does not rely on the panel variation within
blocks. This specification under-emphasizes small
timing differences in the arrival of maps and instead

Table 3. Impact of Landsat on Gold Discovery for Juniors
vs. Seniors

1(Junior) 1(Junior) 1(Senior) 1(Senior)

Variables 0.0288∗∗∗ 0.127∗∗∗

Post mapped (0.00563) (0.0285)
Post low-cloud 0.0472∗∗∗0000 0.121∗∗∗

(0.00651) (0.0260)
Block fixed effects 355.68% 583% 182.39% 174.95%
Year fixed effects Yes Yes Yes Yes
N Yes Yes Yes Yes
Post mapped 389213 389213 389213 389213

Notes. Standard errors clustered at block-level shown in parentheses.
Block-year level observations, OLS models. Post mapped: 0/1 = 1
after the first image and Post low-cloud: 0/1 = 1 after first low-cloud
image. 1(Junior): 0/1 = 1 if for junior discovery and 1(Senior): 0/1 = 1
for senior-led discovery.

+p < 0.15; *p < 0.10; **p < 0.05; ***p < 0.01.
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simply relates overall delays to the probability that
any discovery is reported in the 20-year period after
the launch of the Landsat program. The baseline
specification takes the form Yi �α+β1×Delayi+γi+εi,
where the main outcome variable, Yi, is an indicator
forwhether any discoverywasmade in a given block i
between 1972 and 1990, Delayi is the difference be-
tween the year in which a block was mapped with a
low cloud image and 1972, and γi represents spatial
fixed effects, such as at the continent, subregion, or
block-group level. The estimates are presented in
online appendix, Table D.12. This specification is also
helpful because I can evaluate the robustness of the
baseline results to using an alternate source of data for
the dependent variable, SNL Metals and Mining. The
SNL data have limited coverage before 1982 and
therefore cannot be used in the main specification but
can be used here as an alternate measure of gold
discovery. I also estimate another version of the cross-
sectional specification where the dependent variable
is time from 1972 until the first discovery in a given
block. In all the three cross-sectional specifications,

the estimates are statistically significant, indicating
that greater delays in Landsatmapping are associated
with a greater delay in the discovery of deposits.

4.3.3. Additional Robustness Checks. In addition to
examining the concern around preexisting trends and
using the IV and cross-sectional specifications, a num-
ber of additional concerns are worth examining as well.
I estimate alternate models to test for these concerns
and provide a consolidated figure with the coefficient
for the Post Low − Cloudit variable in Figure 4. I pro-
vide a brief description of these concerns later.
First, the Post Low − Cloud variable uses 30% as the

cutoff for a low cloud image. I investigate robustness
to this cutoff. Second, given spatial auto-correlation
between blocks, I examine robustness to clustering
standarderrorsamonggeographicallyproximateblocks.
Third, given concerns about mismeasurement in the
dependent variable, I restrict my focus to only sig-
nificantly large discoveries (above 2.2 million oz. of
proven reserves), where missing data are less likely to
be of concern.

Figure 4. (Color online) Evaluating the Robustness of the Research Design

Note. This figure explores how the baseline estimate on the Post Low − Cloud variable changes in the baseline specification for a variety of
alternate specifications. Online Appendix D explains each of these alternate specifications and presents the underlying regressions that provide
the estimates for this figure.
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Fourth, the spatial variation in the blocks that were
mapped early is not completely random. In particu-
lar, the United States seems to have been mapped
early, whereas parts of the USSR seem to have been
mapped late, although variation in other parts of the
world seems more idiosyncratic. In order to address
concerns that regions with problematic variation are
driving the effect, I repeat the analysis for different
subsamples of the data excluding just the United
States; excluding the United States, Canada, and
Australia (the top three gold producers in the world);
and excluding the USSR and China (where mea-
surement error of gold discoveries is likely to exist). It
is also helpful to exclude subsamples of blocks that
might be viewed as problematic. I therefore repeat the
analysis excluding blocks where discoveries had al-
ready been reported prior to 1972 and excluding
blocks that were never mapped by Landsat.

Fifth, I examine geographic variation in the baseline
results in order to verify that no one region is driving
the overall results. I estimate the baseline specifica-
tion six times, each time excluding blocks from one of
the six continents I studied. Sixth, as Figure 1 indi-
cates, the timing of the mapping is such that ap-
proximately 75% of the globe was mapped in the first
two years of the Landsat program, after which there
was a significant delay before the remaining blocks
were mapped. While this pattern is not a direct
concern for the analysis in terms of identification, I
estimate the baseline prediction excluding blocks
mapped in 1972 and both 1972 and 1973.

Seventh, there is a concern that Landsat mapping
coincides with improvements in institutional quality
in a number of major regions (e.g., the former Soviet
Union), and so confounds the direct effect on gold
exploration. To account for this concern, I present
estimates that provide region-specific trends using
three different ways to group blocks into regions. I
also present estimates by including a fixed effect for
the number of years since a discovery has been made
in a given block. Eighth, given that the choice of start
and end dates for the panel (1950–1990) is somewhat
arbitrary, I present estimates by differing length of
the panel.

Finally, I present estimates using placebo treatments
to make sure that the results are not a mechanical
artifact of the research design or measurement pro-
cess. To do so, I randomly assign it a year between
1972 and 1990 in which the block wasmapped and run
the analysis using this fake treatment year. Further-
more, my interviews with executives in the gold in-
dustry revealed that, although Landsat is useful for
understanding the geology of a region for gold ex-
ploration, its utility is severely diminished in regions
where tree cover obscures details of the land surface
underneath. Accordingly, I use a data set of global

tree cover to extract blocks that contain significant
tree cover and estimate the impact of Landsat on this
limited group only.
Figure 4 presents estimates for each of these eight

sets of robustness checks. As is clear from this chart,
the baseline finding that Landsat images increases
total discoveries is corroborated across these speci-
fications, although the magnitude of the estimate
does change somewhat depending on the specifica-
tion. Online Appendix D provides the estimates and
tables underlying this chart.

4.3.4. Robustness: Juniors vs. Seniors. Now, it turns
to evaluating a few concerns that relate more directly
for the result that juniors increase their market share
following the availability of Landsat information.
First, online appendix, Figure D.6, estimates the

event study specification similar to Figure 2. As these
charts show, both junior and senior firms have a flat
pretrend and discoveries grow only after the map-
ping. Second, I estimate robustness checks that eval-
uate whether the differential benefit for junior firms
holds when excluding certain key regions and when
counting large discoveries. Online appendix Table D.15
provides these estimates.
A specific concern that arises with the result that

speaks to the impact on juniors is that seniorsmight be
outsourcing their exploration to juniors, rather than
losing out to them per se. Therefore, in online ap-
pendix Table D.13, I use data on joint ventures to test
this idea. I find that while outsourcing could be rel-
evant, most of the junior firm discoveries represent
discoveries from capital-constrained firms. Overall,
these robustness results are in line with the theory
that juniors benefit more from the arrival of pub-
lic data.

4.4. Probing the Cost Mechanism
In Section 2.2, I derived the result that as the project
costs for juniors increase, the increase in their market
share initially increases (intermediate cost case), but
beyond a certain threshold it decreases (high cost
case). In other words, change in share of juniors in-
creases with increasing Δx and is then decreasing. I
now test this idea empirically. Finding results con-
sistent with this pattern would be evidence of the
validity of the causal mechanism in the theoretical
model, which identifies the difference in the project
costs as one important reason why public informa-
tion infrastructure is particularly beneficial for ju-
nior firms.
In order to test this prediction, I rely on data from

the Fraser Institute Survey of Mining Companies on
the quality of local institutions (Jackson 2014) as a
proxy for differences in cost between juniors and senior
firms, as described in Section 3.3.3. The Fraser survey
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provides a rank of institutional quality for 122 na-
tional and subnational regions around the world.
Regions in the first quartile of the Fraser rankings
have the highest quality institutions and are thus
considered low cost; regions in the second quartile are
medium cost; and regions in the third and fourth
quartiles are considered to be high cost. I divide the
countries in this way because most of the meaningful
variation in institutional quality is found among the
top 70 or so regions (the first and second quartile),
given that there is a long list of regions with poor
institutions and low levels of gold exploration. All
regions below the median are therefore classified
as high-cost regions. Using this measure, I modify
the baseline specification to include separate coeffi-
cients for the effect of mapping for each of these
three cost categories. Specifically, I estimate Yit � α+
β1 ×Postit ×LowCosti + β2 ×Postit ×MediumCosti + β3×
Postit ×HighCosti +γi + δt + εit, where β1, β2 and β3 are
the coefficients of interest.

Table 4 presents results from this specification
using both the Post Mappedit and Post Low − Cloudit
variables. In low-cost regions, seniors gain about
0.367 new discoveries, whereas juniors gain about
0.177, about 32% of the market. In medium-cost re-
gions, although the overall increase is lower (in line
with the model), the junior market share is higher, at
about 56%. Therefore, the value of Landsat infor-
mation to junior firms increases as their cost disad-
vantage increases. However, once cost differences
increase substantially, the junior advantage goes down
again. Figure 3(b) plots these market shares visually
to validate that the empirical results fit the prediction
that the Landsatmaps help juniorfirms overcome cost

differences when those differences are low or me-
dium, but these gains disappear in regions with very
high costs. Combined with the results in the previous
section, the data support the conclusion that not only
does public data infrastructure benefit private-sector
productivity as a whole, but it might be particularly
valuable for entrant firms who have higher costs of
investing in risky projects.
In addition to differences in cost, junior and senior

firms could also differ in the extent to which they had
access to private maps about their target regions. In
the notation of the theory, seniors could have had a
more informative prior, p0, than juniors. In this case,
one could imagine that the marginal value of Landsat
map information would be higher for juniors, which
could account for their increased market share. Al-
though this mechanism is likely to be relevant for the
impact of public data infrastructure generally, I do
not find strong evidence for it in this context. Spe-
cifically, if we expected the differential information
mechanism to hold, then we should expect that the
impact of Landsat on junior market share should be
the highest in places with little preexisting map-
ping, such as in countries with poor quality local
institutions. In practice, I find an inverted U-shaped
relationship between junior market share and insti-
tutional quality. Furthermore, as shown in online
appendix Figure D.5, the positive effects of Landsat
in Africa and Asia, where I would expect the priors
for junior firms to be particularly poor, are minimal.
Although certainly not conclusive evidence, these
results provide confidence in the theoretical model
that focuses on cost differences as an important
mechanism through which juniors might benefit dis-
proportionately from public mapping infrastructure.
Having said that, I am unable to directly measure the
extent to which juniors and seniors were privately
informed about different regions before the arrival of
Landsat. Such a measure would offer a more direct
test of this mechanism, which could operate in par-
allel with the cost mechanism I outline.

5. Discussion
In that Empire, the Art of Cartography attained such
Perfection that. . .the College of Cartographers evolved a
Map of the Empire that was of the same Scale as the
Empire and that coincided with it point for point.

—“On Exactitude in Science,” Jorge Luis Borges

Although the public sector has engaged in mapping
and other forms of public data provision for centuries,
this paper provides some of the first empirical evi-
dence on the role of these investments in shaping
private sector performance and competition. This
work has implications for the literature on the role of
public resources on private performance, which thus

Table 4. Impact of Landsat on Juniors and Seniors by
Cost Differences

Variables

Post mapped Post low-cloud

Senior Junior Senior Junior

Post × low cost 0.357∗∗∗ 0.152∗∗∗ 0.367∗∗∗ 0.177∗∗∗
(0.0562) (0.0280) (0.0578) (0.0311)

Post × medium cost 0.148∗ 0.156∗∗∗ 0.138∗ 0.170∗∗∗
(0.0768) (0.0517) (0.0764) (0.0522)

Post × high cost 0.0582∗∗ −0.0156∗∗ 0.0477∗ −0.000651
(0.0297) (0.00729) (0.0270) (0.00630)

Block fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
N 389,213 389,213 389,213 389,213

Notes. Standard errors clustered at block-level shown in parentheses.
Block-year level observations, OLSmodels. In each of the three sets of
specifications, I evaluate the impact of Landsat on Senior and Junior
firms separately for regions with high-, medium-, and low-cost
differences between junior and senior firms. These categories are
created based on institutional quality rank at the block-level as de-
scribed in Section 4.4.

+p < 0.15; *p < 0.10; **p < 0.05; ***p < 0.01.
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far has examined the impact of public finance and
public technology. This study provides a theoretical
and empirical framework for the analysis of public
data on the private sector. In particular, beyond the
direct effects of public information in shaping the
efficiency of private investments, I show that public
data could have an important second-order effect
by stimulating entry. Public data offers a relatively
cheap instrument for the public sector to shape pri-
vate performance and stimulate competition.

Furthermore, the process of innovation is often
thought of as a search for solutions in complex
landscapes (Fleming and Sorenson 2004, Aharonson
and Schilling 2016)—not unlike the search for gold—
and the language of exploration and discovery is
common in the literature (March 1991, Henderson
and Cockburn 1996, Manso 2011). By highlighting
public data as a channel through which public in-
vestment shapes private discovery, my results add to
previous work in this area that has highlighted the
role of other channels such as IP restrictions, libraries,
information technology, and financial incentives
(David et al. 2000, Furman and Stern 2011, Kleis et al.
2012, Nagaraj 2017, Furman et al. 2018).

This work also has practical implications for man-
agers, governments, and nonprofits looking to use
data to shape private performance. The trove of gov-
ernment information (suchasweatherdata, environmental
information, consumer surveys, etc.) is large, as are other
sources of free data such as Wikipedia, OpenStreetMap,
and so on (Nagaraj 2020). Founders and startups in
particular could look to exploit underused public
domain information as an explicit strategy to reduce
risk in the early stages of their project, thereby re-
ducing the competitive advantage of larger firms.
Similarly, governments and funders looking to foster
private performance and entry might consider sup-
porting large-scale mapping efforts that provide new
public data on biological or physical entities (e.g., the
Human Cell Atlas project maps all cells in the human
body; Rozenblatt-Rosen et al. 2017, Nagaraj and Stern
2020). This study provides a theoretical framework
and some of thefirst empirical evidence of the value of
such efforts for downstream investment.

Finally, despite the contributions outlined previ-
ously, a few limitations of this study must be ac-
knowledged. First, it is important to note that the
Landsat variation used in the study is limited to about
25% of the earth’s surface and that in the gold ex-
ploration industry defining a discovery can be some-
what arbitrary and hard to define. The results do seem
robust to a battery of tests that investigate this issue.
Second, although I focus on the role of costs as the
primary mechanism to explain the heterogeneous

effects of public data, future research should look at
complementary channels as well. In particular, I do not
investigate the likely possibility that public data could
help smaller firms more than larger firms because
smaller firms have less private information to begin
with, because they lack technological or human capital
or because they are better able to draw on academic
science inspired by Landsat (Rowan 1975, Stuart and
Podolny 1996). Finally, because I do not possess data
on costs of extraction, one cannot conclude from the
market share result that juniors benefit more from
Landsat in terms of profitability or social welfare.
Follow-up work should perform a more thorough
examination of the welfare impacts of public data
infrastructure, including cost and generalizability
considerations across a variety of different programs.
Ultimately, this research suggests that public data

offers a powerful, relatively cheap, and effective
channel for governments to encourage private in-
vestment and performance and for new entrants to
gain competitive advantage in dynamic markets. A
more thorough understanding of this potentially
important channel remains an exciting avenue for
future work.
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Endnotes
1The full talk can be accessed at https://www.youtube.com/watch?
v=of8ai1HhqK4.
2My interview with an EROS center employee suggests that the data
on the use of these images by firms were highly sensitive and have
since been destroyed (personal communication, March 24, 2015). As
such, it is unavailable for use in this research.
3A commercial satellite imagery provider was launched in the late
1980s through the Satellite Pour Observation de la Terre (“SPOT”)
satellite system (Chevrel et al. 1981).
4 See http://landsat.usgs.gov/metadatalist.php.
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